Konu 6
Data Transmission & Integrity

Text: Communication Systems Principles using MATLAB®

TTTTT drawings and images copyright © John Wiley & Sons 2018

Alicida guraltt vardir

e Rastgele (tahmin edilemeyen veya edilebilir) gtrultu.
e Alicinin hata oranini etkiler

e Sayisal iletisimde
* Alici hata yapmazsa bu glirtltiyd tamamen temizlemis olur
* Hata yapilsa bile bu bit hatalari tespit edilebilir
* Hatta bu bit hatalari duzeltilebilir.

© John Wiley & Sons 2018

Gurultu

e Gurultu sinyal érnekleri Gauss dagilimlidir.
 Sifir ortalamali E[n(t)] = 0, Vt

* E[n(tn(ty)] = E[n(t)]E[n(t)] = 0,V # ¢,
* Her hangi iki andaki glirtiltd birbirinden bagimsizdir
* R(t; — t,) = E[n(ty)n(ty)] = 6(t; — t,) = §(1) »White noise

Random Signal with Gaussian Distribution

N

Signal Amplitude
o

|
N

1
N

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time t

o

© John Wiley & Sons 2018

Signal Amplitude
o N

1
N

Olasilik yogunluk fonksiyonu

e Gauss dagilimi

Random Signal with Gaussian Distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time ¢

© John Wiley & Sons 2018

0.5

0.45

0.4

0.35

o
w

Probability Density
o
© N
N (@]

o
—
(@]

©
—

0.05

Gaussian Distribution

-3 -2 -1 0 1 2 3 4
Signal Amplitude

Olasilik yogunluk fonksiyonu

e pdf

f(x) = o~ (x—)?/20?

* Ortalama: E[X] =
* Varyans : Var|X
* Matlab

* Rand
e Sigma*rand+mu

| ——

Noise Signal

 Sayisal iletisimde hata, guriltinun belli bir degerin Gzerinde
olma olasihigi ile yakindan iliskilidir.

e GaussArea.m

Area under ‘tail’ of curve

o
o

o o o
N w EAN

Probability Density f(x)
o

oo —

-4 -3 -2 -1 0 1 2 3 4
Signal Amplitude x

© John Wiley & Sons 2018

PDF Areas

* Complimentary error function: egc()
erfc(u) = i J e *" dx
VT
u

* Q fonksiyonu (Matlab gfunc(), qfuncino\({())

Qu) =PX >u) = 2 dx

1 _
* Aradaki iliski
e Standart olmayan Gauss dagilimli ise?

6.4 Sayisal Sistemlerde Bit Hatalari

* Hata kabul etmeyen uygulamalar
* E-posta, dosya iletimi

e Hataya toleransli uygulamalar
» Telekonferans, videokonferans, radyo, TV

* Bit hata orani (BER)
« 1070
e 100 MB’lik dosyadaki ortalama hatali bit sayisi?

» Kaskat sistemler (6rnek?)
* Birlesik sistemin bit hata orani nasil hesaplanir?

BER, = Bit error rate of stage n

5 - | Modulator So Cable Sy Repeater | - Sy
BER, BER, BER,

6.4 Sayisal Sistemlerde Bit Hatalari

e Bit hatalari nasil olur?
« Glriltd
e SOnUimlenme
e Bozulma

 Onceki konuda gérdugimiiz kipcdziici ciktisinda bir nokta elde ediyorduk
* Bu bozulmalar nedeniyle nokta yanlis bolgeye diser ve yanlis karar verilir.

e Gurultu olasilik yogunlugu hatayi nasil etkiler?
e Basit bir iki ornek (BPSK)

Decision boundary

.:. - £ O st -
L — _
- - T - o+ T8

Binary 0 Binary 1

A + A

Figure 6.6 Two polar values +A and —A, with additive noise. The probability density shows
the likelihood for each level at the receiver.

© John Wiley & Sons 2018

6.4.2 Bit hatalarinin analizi

* QPSK 6rnegi

' ' Figure 6.7 Extending the
concept of received points
1 totwo orthogonal axes.
Two bits are transmitted at

10 " 00 4 atime, with the decision
% s boundary being the axes
K ".;(j;v : fp L 1 themselves.
SRR "y s 7
f | - ." - +-! *-
I
. 1+ '.“':_ & .-: }" ‘.‘.ti- »
L, ,- - -Oi' . _
- A * 1--"? \iq-'- L]
L *; = kS
& - . s
1im - .01 §

© John Wiley & Sons 2018

10

6.4.2 Bit hatalarinin analizi

 Sinyal +A UGzerine gurultu eklendiginde esik degerinin altina
duserek —A kararina (yanlis karara) yol acabilir.
* Tam tersi de olabilir.

Received Amplitudes

© John Wiley & Sons 2018

11

6.4.2 Bit hatalarinin analizi

*r(t) = £1s(t) + n(t)

* Alicida s(t) ile carpip integralinial.r = XA +n

* P(hata) = P(r < 0|A)P(A) + P(r > 0|-A)P(—4)
e Tarali alan

Decision point for two-level binary signal with noise

Decision boundary

Binary 0 Binary 1

1 :‘;1 n -‘4 L

Signal value

© John Wiley & Sons 2018

6.4.2 Bit hatalarinin analizi

* BER = P(n < —A)+P(n > A) -

e Simetriden dolayi
* BER =P(n > A)
* n~N(0,0%)

* BER =

* BER = Q(VSNR)

* SNR cinsinden yazalim
* BerPlots.m

Bit Error Rate for Binary Baseband Modulation

107
10'25— Low SNR

N AA AN DN N A~ A
1073 VALVAYALV/ SAVARNVAY,

Bit Error Rate
>
()]

1077
-8
10 O Random trials
Theoretical
107° '
0 2 4 6 10

© John Wiley & Sons 2018

SNR, E,/N, dB

13

12

6.5 Hata Tespiti

 Alici, gonderilen bit dizisinde hata olup olmadigini tespit edebilir
e Hatta, bu hatayi diizeltebilir

. Bumf<r) icin gonderilen bit dizisine fazladan bilgi (redundancy) eklenmesi
gerekir.

* Bu is sistematik olarak yapiimaldir.
* Buislemlerde XOR (Exclusive-OR) fonksiyonu sikca karsimiza cikar

c A®B=A.B+B.A
e |ki bitin farkh olup olmadigini tespit eder

~ = O O
L O = O
o » = O

Table 6.2 Examples of computation of an even parity DL

6.5 Hata Tespiti b b b

b

b,

¥ & 4 1 i partty
* Eslik biti (parity bit) 1o 1 1 1 0 1 1 0
.] e ..] 0 0 | | | 0 | 0 1
* Bir bit dizisinin sonuna eklenir L1 o0 11 0 o1
 Or. I'ler cift sayida olacak sekilde 1 o 1 1 1 1 o 1 0
* Ardisik XOR islemleriyle Gretilebilir
* Bir bit hatali giderse alicida ne olur?
10 0 0 0
* |ki bit hatali giderse?? L o0 1 0O |
* Bit hatalari genelde art arda gelir | ; ; |
o 0 1 0 0
* |ki boyutlu parity islemi o 1 0

© John Wiley & Sons 2018

15

6.5.1 Hata Duzeltme

* |Ik akla gelen yontem: Tekrar etmek (repetition)
* Cok fazla ek yuk getiriyor.
* Repetition + Majority Rule

* Asagidaki 6rnek
* Mesaj kelimeleri
* Bunlara karsilik gelen kod kelimeleri

m Coded Output Bits

m Bk O O
R, O R, O
L O O O
L O O O
L O O O

© John Wiley & Sons 2018

16

Tekrar Kodu: Repetition Code

* Suppose one bit changes, can we detect the error?

* Yes.. Because 000 000 010 is not a valid codeword.

* Can we correct the error?

* Yes...if receiver assumes the 1 should be 0 and codeword sent was 000 000 000.

m Coded Output Bits

~ P O O
R O L, O
~ O O O
~r O O O
~r O O O

© John Wiley & Sons 2018

17

Repetition Code

* Suppose two bits change, can we detect the error?
* Yes.. Because 000 000 011 is not a valid codeword.
e Can we correct the error?

e Yes...if ;’eceiver assumes the valid codeword sent was 000 000 111. But this is
wrong!

2 bit hatay diizeltemedik

m Coded Output Bits

~ P O O
R O L, O
~ O O O
~r O O O

© John Wiley & Sons 2018

Hamming Uzaklig|

* |ki kod kelimesinin farkh oldugu bit sayisi:

* Bitun kod kitabindaki en ufak uzaklik: Hamming Uzakligi d.,;,, .

* Kodun performansini en yakin iki kod kelimesi belirler
e Zincirdeki en zayif halka

 Onceki 6rnekte, d,,,;, = **
* d bit hata sezebilmekicin d,,;;, = d + 1
* d bit hata duzeltebilmek icin d,,;,, = 2d + 1

6.5.1 Hamming Kodlari

e Hata DUZELTEBILEN kodlar

* Her bit icin bir kontrol degeri saglarlar
* Boylece butlun bir bitlik hatalari dizeltebilirler.

 Ornek: Hamming (N, M) kodu:

* N bit kod kelimesi, M bit mesaj kelimesi.

* Onceki tekrarlama kodu: (9,2)’dir. Cinki: 2 bit mesaja 9 bit kod kelimesi
karsihik gelir. Yani 9 — 2 = 7 kontrol biti var. Cok verimsiz.

* En bilinen 6rnek: Hamming (7,4) kodu. M=4 mesaj kelimesine karsilik 7
bit kod kelimesi (yani C = 3 artik (kontrol) biti).

* Kontrol bitlerine eslik biti de denir

6.5.1 Hamming Kodlari
* (N,M) = (9,2) kod

« 2M = 22 = 4 mesa;

e 2V = 29 = 512 adet kod kelimesi
adayi

* Bu adaylardan 4 tanesi kullanilyor,
digerleri (2¥ — 2M = 508 adet)
gecersiz oluyor

e Her biri N bit olan 2™kod
kelimesinde,

e Bir bitlik hatalarla olul\gabilecek kod
kelimesi sayisi N X 2

* Bir bitlik hatalarin duzeltilebilmesi icin
(N + 1) x 2M< 2N olmalidrr.

e (= N — M artik bit sayisi
20 —1>M+C

M C 2C— 1 N=M+C
4 1 1 5
4 2 3 6
4 3 7 7
4 4 15 8
7 3 7 10
7 4 15 11
8 1 1 9
8 2 3 10
8 3 7 11
8 4 15 12
8 5 31 13
16 4 15 20
16 5 31 21
32 6 63 38

6.5.1 Hamming Kodlarinin Uretimi
* H(7,4) kodu

* Bit pozisyonlari 1(LSB) — 7(MSB) H: ”‘j j f j f .
. 3 2 1 =2 0o *1 *0

° (m3,m2,m1,C2,m0, Cl) CO) M5B i i é é {1] ? g
o Artik bitler 2’nin kuvvetlerinde bulunur ISB 1 0 1 0 1 0 1

e Her artik bit in altinda bir adet 1 var.

* O 1’e karsilik gelen mesaj bitleri XOR’lanir
e Alicida c, = my @ m, @ m,

Cy = My @ m, @ m,

5, = Cy D € C, = My D m, @ m,
=y D my; @ my D m,
* Sendromun onluk dizendeki degeri hatali bit pozisyonunu verir

* Or. Mesaj bitleri 0101 olsun...

6.5.2 Checksum (Saglama toplami)

* Bit hatasi olup olmadigini anlamaya yarar
* Veri kendi icinde toplanir
* Gerceklenmesi kolaydir

* Veri 8 veya 16 bitlik parcalara ayrilir ve toplanir
 Alici ve vericide ayni sonucu vermeli

* A few extensions to make it easier (faster) to calculate.

* TCP/IP protokollerinde kullanilir
* |P Header (paket basligi, checksum icindedir)

* Hatalari sezer ama duzeltemez.
* Gecersiz saglama olan paketleri TCP yeniden iletir.

Internet checksum
From Wikipedia, the free encyclopedia

The Internet checksum,12l also called the IPv4 header checksum is a checksum used

in version 4 of the Internet Protocol (IPv4) to detect corruption in the header of IPv4 packets. It is
carried in the IP packet header, and represents the 16-bit result of summation of the header
words.l

The IPv6 protocol does not use header checksums. Its designers considered that the whole-packet
link layer checksumming provided in protocols, such as PPP and Ethernet, combined with the use
of checksums in upper layer protocols such as TCP and UDP, are sufficient.l4l Thus, IPv6 routers
are relieved of the task of recomputing the checksum whenever the packet changes, for instance
by the lowering of the Hop limit counter on every hop.

The Internet checksum is mandatory to detect errors in IPV6 UDP packets (including data
payload).

The Internet checksum is used to detect errors in ICMP packets (including data payload).

© John Wiley & Sons 2018 24

https://en.wikipedia.org/wiki/Internet_checksum#cite_note-rfc1071-1
https://en.wikipedia.org/wiki/Internet_checksum#cite_note-rfc1624-2
https://en.wikipedia.org/wiki/Checksum
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/IPv4#Header
https://en.wikipedia.org/wiki/Internet_checksum#cite_note-3
https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/Point-to-Point_Protocol
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Internet_checksum#cite_note-4
https://en.wikipedia.org/wiki/Time_to_live
https://en.wikipedia.org/wiki/User_Datagram_Protocol#Checksum_computation
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol_for_IPv6#Checksum

Computation
* The checksum calculation is defined in RFC 791:[5]

* The checksum field is the 16-bit ones' complement of the ones' complement sum of all 16-bit words in the
header. For purposes of computing the checksum, the value of the checksum field is zero.

* If there is no corruption, the result of summing the entire IP header, including checksum, should be zero.

* At each hop, the checksum is verified. Packets with checksum mismatch are discarded. The router must
adjust the checksum if it changes the IP header (such as when decrementing the TTL).[6]

 The procedure is explained in detail in RFC 1071 "Computing the Internet Checksum". [1]

* Optimisations are presented in RFC 1624 "Computation of the Internet Checksum via Incremental Update"
[2] (with errata), to cover the case in routers which need to recompute the header checksum during packet
forwarding when only a single field has changed.

1. Computing the Internet Checksum. doi:10.17487/RFC1071. RFC 1071.

2. Jump up to:@ 2 Computation of the Internet Checksum via Incremental

Update. doi:10.17487/RFC1624. RFC 1624.

© John Wiley & Sons 2018 25

https://datatracker.ietf.org/doc/html/rfc1071
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.17487%2FRFC1071
https://en.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc1071
https://en.wikipedia.org/wiki/Internet_checksum#cite_ref-rfc1624_2-0
https://en.wikipedia.org/wiki/Internet_checksum#cite_ref-rfc1624_2-1
https://datatracker.ietf.org/doc/html/rfc1624
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.17487%2FRFC1624
https://en.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc1624

Examples
Calculating the IPv4 header checksum

Take the following truncated excerpt of an IPv4 packet. The header is shown in bold and the checksum is underlined.
4500 0073 0000 4000 4011 b861 c0Oa8 0001
c0a8 00c7 0035 e97c 005f 279f 1ledb 8180

For ones' complement addition, each time a carry occurs, we must add a 1 to the sum.!4

A carry check and correction can be performed with each addition or as a post-process after all additions.

If another carry is generated by the correction, another 1 is added to the sum.

To calculate the checksum, we can first calculate the sum of each 16 bit value within the header, skipping only the checksum field itself.
Note that these values are in hexadecimal notation.

4500 + 0073 + 0000 + 4000 + 4011 + c0a8 + 0001 + c0a8 + 00c7 = 2479c

The first digit is the carry count and is added to the sum:
2 + 479c = 479e (if another carry is generated by this addition, another 1 must be added to the sum)

To obtain the checksum we take the ones' complement of this result: b8 61 (as shown underlined in the original IP packet header).
Verifying the IPv4 header checksum/|edit]

When verifying a checksum, the same procedure is used as above, except that the original header checksum is not omitted.
4500 + 0073 + 0000 + 4000 + 4011 + b861 + c0a8 + 0001 + cO0a8 + 00c7 = 2fffd

Add the carry bits:

fffd + 2 = ffff

Taking the ones' complement (flipping every bit) yields 0000, which indicates that no error is detected. IP header checksum does not check for
the correct order of 16 bit values within the header.

W Jjonn vviiey & >0Nns ZUls PAo)

https://en.wikipedia.org/wiki/Internet_checksum#cite_note-7
https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/w/index.php?title=Internet_checksum&action=edit§ion=4

6.5.3 Cyclic Redundancy Checks (CRC)

* Checksum: Yazilimda daha kolay, CRC: donanimda daha kolay
* Or. Ethernet

 Sirali bitler Gzerinde islem yaparak bir deger uretilir
 Shift register, XOR kapilari

* Mesaj bit dizisi 6nceden belirlenmis bir bit dizisine BOLUNUR
e Kalan deger bit dizisinin sonuna eklenir

* Gergek bir bolime islemi degil, aslinda XOR islemi
* Hatalari sezer ama yine duzeltemez

e 1000’lerce bitlik mesajda sadece 16-32 bit eklenerek, olabilecek
hatalarin buyuk kismi tespit edilebilir

6.5.3 Cyclic Redundancy Checks

* 10luk tabanda bélme islemi 6rnegi 9 7 quotient

2
2
9

652

dividend = 97 rem 3

* Procedure is to add redundant bits to divisor 7 >_

message, successively multiply by 1 or
0 and XOR. -

)
4

6 8
6 3

e Decimal example shown to fix ideas,
but not actually done this way.

-3 remainder

* 682 is the “message”, the remainder
of 3 is the error check.

* If message corrupted, receiver will
obtain a different remainder.

6.5.3 Cyclic Redundancy Checks

e [kilik tabanda bdlme

* Uretec polinomu 4 basamakl
* Mesaj dizisinin sonuna 3 bit sifir

eklenir

e Her adimda:

1.

2.
3.
4

1 veya O ile carp

XOR yap

Yeni bir bit asagi indir
Sonuna kadar devam et

10]1)11010011000

generator
polynomial

1

1011)11010011000
1 011

generator
polynomial

1

1011)_

generator
polynomial

11010011000

1 011

-1

1

0

message
+ 3 zero bits

message
+ 3 zero bits

message
+ 3 zero bits

6.5.3 Cyclic Redundancy Checks

kY
\ message
1 0 1 1 ;l I 1010011000 + 3 yoro bits
L 011 \
generaLor
polynomial
L 1 0 0
1 1
_ | message
1011)@11010011000 4+ 3 zero bits
1011 J
generator
polynomial
1 1 0 0
011
-1 1
& 0
0 1

© John Wiley & Sons 2018

30

Cyclic Redundancy Checks

1 01

generator
polynomial

1 0

0

10
1 10

1

L
()

1

i)

0

© John Wiley & Sons 2018

()

MESSage
+ 3 zero bits

31

6.5.3 Cyclic Redundancy Checks

L 1 1 1 0 0 0 1

1011 ;] 11010011000 3 gero bits
* Sonunda bir kalan elde edilir (bu Seuerator S— .
OFﬂEkte 3 blt) Yo 1J
* Bu kalan , sondaki 3 bit sifirin yerine 1011
konur T
1 0 1 1
* Artik bolme islemi kalansiz olacaktir. 0o
* Kaydirma ve ¢ikarma islemleri —
kaydiran yazmac ve XOR kapilari ile 00 0 0
yaplilir. 0100
oo 0o
: 10 0 0
S0 CRC result

© John Wiley & Sons 2018 32

Cyclic Redundancy Checks

I 11 1 0001

%
\ INEssSage

I a T s
lo11 J 11010011011 + 3 CORC bits

* Alici ayni isi tekrar eder generator 1 0 1]

polynomial
-1 1 00

* Kalan sifir olursa hata yoktur SEEE

-1 1 110
L 0o 1 1

.;.lll]]
1 011

00 o0
| R VI V|

L0010
0000

0101
T00 00

101 1
1011

- 00 0 * NO errors

© John Wiley & Sons 2018 33

Cyclic Redundancy Checks

| W T A B A |

o 10011 jl 10110011011 3 CRC® bits
* Alici ayni isi tekrar eder generator 101 1| e
polynomial o000
 Kalan sifir olursa hata yoktur 000
* Bazen o kadar cok hata olur ki, > 0000
bolme islemi yine kalansiz olur 000!
ve bu tespit edilemez. Ancak bu R

ihtimal cok cok disuktir Tooo0

01 1 0
o0 a0

1101
100101

-1 10 1
101 1

-1 1 0 » error

6.1

Explain the difference between error detection and error correction. In

relation to these concepts:

a) Define the terms error distance and Hamming distance.

b) Explain how two-dimensional parity could be used to correct errors.
c) To detect d errors, what Hamming distance is required in the code-

words? Explain how this comes about.
d) To correct d errors, what Hamming distance is required in the code-

words? Explain how this comes about.

6.2 Hamming codes are able to detect, and in many cases correct, errors.

a) Derive the Boolean check bit generating equations for a Hamming
(7,4) error-correcting code.

b} Calculate the check bits for the 4-bit message block 1110,

c) Calculate the syndrome bits if the message is correctly received.

d) Calculate the syndrome bits if the message is erroneously received
as 1111. Does the syndrome correctly identify the error?

e} Calculate the syndrome bits if the message is erroneously received
as 1101. Does the syndrome correctly identify the error?

© John Wiley & Sons 2018

35

6.3 Create a table similar to Table 6.4 and show that a Hamming (15, 11)
code 1s feasible,

© John Wiley & Sons 2018

36

6.4

With reference to error-detecting codes:

a) Explain what is meant by a checksum. What practical systems use a
checksum for error checking?

b} Explain what is meant by a CRC. What practical systems use a CRC
for error checking?

© John Wiley & Sons 2018

37

6.5 Using the CRC generator 1011 and message 1010 1110,

a) Calculate the CRC remainder if there are no errors. Check your CRC
by replacing it and performing the CRC division process a second
time to show that the remainder is all zero.

b) If there is a 3-bit error burst 111 starting at the third bit transmitted,
show that the bit sequence becomes 1001 0110 101. Then show that
the error is detected.

c} Ifthere is an error burst that happens to be identical to the generator,
starting at bit position 4, show that the bit sequence becomes 1011
1000 101. Then show that this error is not detected.

© John Wiley & Sons 2018

38

