
Konu 6
Data Transmission & Integrity

Text: Communication Systems Principles using MATLAB®

Text, drawings and images copyright © John Wiley & Sons 2018

© John Wiley & Sons 2018 1

Alıcıda gürültü vardır

• Rastgele (tahmin edilemeyen veya edilebilir) gürültü.

• Alıcının hata oranını etkiler

• Sayısal iletişimde
• Alıcı hata yapmazsa bu gürültüyü tamamen temizlemiş olur
• Hata yapılsa bile bu bit hataları tespit edilebilir
• Hatta bu bit hataları düzeltilebilir.

© John Wiley & Sons 2018 2

Gürültü
• Gürültü sinyal örnekleri Gauss dağılımlıdır.

• Sıfır ortalamalı 𝐸 𝑛 𝑡 = 0, ∀𝑡

• 𝐸 𝑛 𝑡1 𝑛(𝑡2) = 𝐸 𝑛 𝑡1 𝐸 𝑛(𝑡2) = 0, ∀𝑡1 ≠ 𝑡2
• Her hangi iki andaki gürültü birbirinden bağımsızdır
• 𝑅 𝑡1 − 𝑡2 = 𝐸 𝑛 𝑡1 𝑛(𝑡2) = 𝛿 𝑡1 − 𝑡2 = 𝛿 𝜏 →White noise

© John Wiley & Sons 2018 3

Olasılık yoğunluk fonksiyonu
• Gauss dağılımı

© John Wiley & Sons 2018 4

Olasılık yoğunluk fonksiyonu

• pdf

© John Wiley & Sons 2018 5

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒− 𝑥−𝜇 2/2𝜎2

• Ortalama: 𝐸 𝑋 = 𝜇.
• Varyans ∶ 𝑉𝑎𝑟 𝑋 = 𝜎2

• Matlab
• Rand
• Sigma*rand+mu

Noise Signal
• Sayısal iletişimde hata, gürültünün belli bir değerin üzerinde

olma olasılığı ile yakından ilişkilidir.

• GaussArea.m

© John Wiley & Sons 2018 6

PDF Areas
• Complimentary error function: erfc()

erfc 𝑢 =
2

𝜋
න

𝑢

∞

𝑒−𝑥
2
𝑑𝑥

• Q fonksiyonu (Matlab qfunc(), qfuncinv())

Q 𝑢 = 𝑃(𝑋 > 𝑢) =
1

2𝜋
න

𝑢

∞

𝑒−
𝑥2

2 𝑑𝑥

• Aradaki ilişki

• Standart olmayan Gauss dağılımlı ise?

© John Wiley & Sons 2018 7

6.4 Sayısal Sistemlerde Bit Hataları
• Hata kabul etmeyen uygulamalar

• E-posta, dosya iletimi

• Hataya toleranslı uygulamalar
• Telekonferans, videokonferans, radyo, TV

• Bit hata oranı (BER)
• 10−6

• 100 MB’lık dosyadaki ortalama hatalı bit sayısı?

• Kaskat sistemler (örnek?)

• Birleşik sistemin bit hata oranı nasıl hesaplanır?

© John Wiley & Sons 2018 8

6.4 Sayısal Sistemlerde Bit Hataları
• Bit hataları nasıl olur?

• Gürültü
• Sönümlenme
• Bozulma

• Önceki konuda gördüğümüz kipçözücü çıktısında bir nokta elde ediyorduk
• Bu bozulmalar nedeniyle nokta yanlış bölgeye düşer ve yanlış karar verilir.

• Gürültü olasılık yoğunluğu hatayı nasıl etkiler?

• Basit bir iki örnek (BPSK)

© John Wiley & Sons 2018 9

6.4.2 Bit hatalarının analizi

• QPSK örneği

© John Wiley & Sons 2018 10

6.4.2 Bit hatalarının analizi
• Sinyal +𝐴 üzerine gürültü eklendiğinde eşik değerinin altına

düşerek −𝐴 kararına (yanlış karara) yol açabilir.
• Tam tersi de olabilir.

© John Wiley & Sons 2018 11

6.4.2 Bit hatalarının analizi
• 𝑟(𝑡) = ±1𝑠(𝑡) + 𝑛(𝑡)

• Alıcıda 𝑠(𝑡) ile çarpıp integralini al.𝑟 = ±𝐴 + 𝑛

• 𝑃 ℎ𝑎𝑡𝑎 = 𝑃 𝑟 < 0 𝐴 𝑃 𝐴 + 𝑃 𝑟 > 0 −𝐴 𝑃(−𝐴)

• Taralı alan

© John Wiley & Sons 2018 12

6.4.2 Bit hatalarının analizi

• 𝐵𝐸𝑅 = 𝑃 𝑛 < −𝐴
1

2
+ 𝑃(𝑛 > 𝐴)

1

2

• Simetriden dolayı

• 𝐵𝐸𝑅 = 𝑃 𝑛 > 𝐴

• 𝑛~𝒩(0, 𝜎2)

• 𝐵𝐸𝑅 =

• 𝐵𝐸𝑅 = 𝑄 𝑆𝑁𝑅

• SNR cinsinden yazalım

• BerPlots.m
© John Wiley & Sons 2018 13

6.5 Hata Tespiti
• Alıcı, gönderilen bit dizisinde hata olup olmadığını tespit edebilir
• Hatta, bu hatayı düzeltebilir
• Bunun için gönderilen bit dizisine fazladan bilgi (redundancy) eklenmesi

gerekir.
• Bu iş sistematik olarak yapılmalıdır.

• Bu işlemlerde XOR (Exclusive-OR) fonksiyonu sıkça karşımıza çıkar

• 𝐴⨁𝐵 = 𝐴. ത𝐵 + 𝐵. ҧ𝐴

• İki bitin farklı olup olmadığını tespit eder

© John Wiley & Sons 2018 14

Input A Input B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

6.5 Hata Tespiti
• Eşlik biti (parity bit)

• Bir bit dizisinin sonuna eklenir
• Ör. 1’ler çift sayıda olacak şekilde

• Ardışık XOR işlemleriyle üretilebilir

• Bir bit hatalı giderse alıcıda ne olur?

• İki bit hatalı giderse??
• Bit hataları genelde art arda gelir

• İki boyutlu parity işlemi

© John Wiley & Sons 2018 15

6.5.1 Hata Düzeltme
• İlk akla gelen yöntem: Tekrar etmek (repetition)

• Çok fazla ek yük getiriyor.

• Repetition + Majority Rule

• Aşağıdaki örnek
• Mesaj kelimeleri
• Bunlara karşılık gelen kod kelimeleri

© John Wiley & Sons 2018 16

Input Bits Coded Output Bits

0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 1 1

1 0 0 0 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

Tekrar Kodu: Repetition Code

• Suppose one bit changes, can we detect the error?

• Yes.. Because 000 000 010 is not a valid codeword.

• Can we correct the error?

• Yes…if receiver assumes the 1 should be 0 and codeword sent was 000 000 000.

© John Wiley & Sons 2018 17

Input Bits Coded Output Bits

0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 1 1

1 0 0 0 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

Repetition Code
• Suppose two bits change, can we detect the error?

• Yes.. Because 000 000 011 is not a valid codeword.

• Can we correct the error?

• Yes…if receiver assumes the valid codeword sent was 000 000 111. But this is
wrong!

• 2 bit hatayı düzeltemedik

© John Wiley & Sons 2018 18

Input Bits Coded Output Bits

0 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 0 0 1 1 1

1 0 0 0 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

Hamming Uzaklığı

• İki kod kelimesinin farklı olduğu bit sayısı:

• Bütün kod kitabındaki en ufak uzaklık: Hamming Uzaklığı 𝑑𝑚𝑖𝑛.
• Kodun performansını en yakın iki kod kelimesi belirler

• Zincirdeki en zayıf halka

• Önceki örnekte, 𝑑𝑚𝑖𝑛 = ⋯

• 𝑑 bit hata sezebilmek için 𝑑𝑚𝑖𝑛 = 𝑑 + 1

• 𝑑 bit hata düzeltebilmek için 𝑑𝑚𝑖𝑛 = 2𝑑 + 1

© John Wiley & Sons 2018 19

6.5.1 Hamming Kodları
• Hata DÜZELTEBİLEN kodlar

• Her bit için bir kontrol değeri sağlarlar
• Böylece bütün bir bitlik hataları düzeltebilirler.

• Örnek: Hamming (𝑁,𝑀) kodu:
• 𝑁 bit kod kelimesi, 𝑀 bit mesaj kelimesi.

• Önceki tekrarlama kodu: (9,2)’dir. Çünkü: 2 bit mesaja 9 bit kod kelimesi
karşılık gelir. Yani 9 − 2 = 7 kontrol biti var. Çok verimsiz.

• En bilinen örnek: Hamming (7,4) kodu. M=4 mesaj kelimesine karşılık 7
bit kod kelimesi (yani C = 3 artık (kontrol) biti).

• Kontrol bitlerine eşlik biti de denir

© John Wiley & Sons 2018 20

6.5.1 Hamming Kodları
• 𝑁,𝑀 = (9,2) kod

• 2𝑀 = 22 = 4 mesaj
• 2𝑁 = 29 = 512 adet kod kelimesi

adayı
• Bu adaylardan 4 tanesi kullanılıyor,

diğerleri (2𝑁 − 2𝑀 = 508 adet)
geçersiz oluyor

• Her biri N bit olan 2𝑀kod
kelimesinde,
• Bir bitlik hatalarla oluşabilecek kod

kelimesi sayısı 𝑁 × 2𝑀

• Bir bitlik hataların düzeltilebilmesi için
𝑁 + 1 × 2𝑀≤ 2𝑁 olmalıdır.

• 𝐶 = 𝑁 −𝑀 artık bit sayısı

• 2𝐶 − 1 ≥ 𝑀 + 𝐶
© John Wiley & Sons 2018 21

6.5.1 Hamming Kodlarının Üretimi
• H(7,4) kodu

• Bit pozisyonları 1(LSB) – 7(MSB)

• 𝑚3, 𝑚2, 𝑚1, 𝑐2, 𝑚0, 𝑐1, 𝑐0
• Artık bitler 2’nin kuvvetlerinde bulunur

• Her artık bit in altında bir adet 1 var.

• O 1’e karşılık gelen mesaj bitleri XOR’lanır

• Alıcıda

• Sendromun onluk düzendeki değeri hatalı bit pozisyonunu verir

• Ör. Mesaj bitleri 0101 olsun…

© John Wiley & Sons 2018 22

6.5.2 Checksum (Sağlama toplamı)
• Bit hatası olup olmadığını anlamaya yarar

• Veri kendi içinde toplanır

• Gerçeklenmesi kolaydır

• Veri 8 veya 16 bitlik parçalara ayrılır ve toplanır
• Alıcı ve vericide aynı sonucu vermeli

• A few extensions to make it easier (faster) to calculate.

• TCP/IP protokollerinde kullanılır
• IP Header (paket başlığı, checksum içindedir)

• Hataları sezer ama düzeltemez.

• Geçersiz sağlama olan paketleri TCP yeniden iletir.

© John Wiley & Sons 2018 23

© John Wiley & Sons 2018 24

Internet checksum

From Wikipedia, the free encyclopedia

The Internet checksum,[1][2] also called the IPv4 header checksum is a checksum used

in version 4 of the Internet Protocol (IPv4) to detect corruption in the header of IPv4 packets. It is

carried in the IP packet header, and represents the 16-bit result of summation of the header

words.[3]

The IPv6 protocol does not use header checksums. Its designers considered that the whole-packet

link layer checksumming provided in protocols, such as PPP and Ethernet, combined with the use

of checksums in upper layer protocols such as TCP and UDP, are sufficient.[4] Thus, IPv6 routers

are relieved of the task of recomputing the checksum whenever the packet changes, for instance

by the lowering of the Hop limit counter on every hop.

The Internet checksum is mandatory to detect errors in IPV6 UDP packets (including data

payload).

The Internet checksum is used to detect errors in ICMP packets (including data payload).

https://en.wikipedia.org/wiki/Internet_checksum#cite_note-rfc1071-1
https://en.wikipedia.org/wiki/Internet_checksum#cite_note-rfc1624-2
https://en.wikipedia.org/wiki/Checksum
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/IPv4#Header
https://en.wikipedia.org/wiki/Internet_checksum#cite_note-3
https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/Point-to-Point_Protocol
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Internet_checksum#cite_note-4
https://en.wikipedia.org/wiki/Time_to_live
https://en.wikipedia.org/wiki/User_Datagram_Protocol#Checksum_computation
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol_for_IPv6#Checksum

© John Wiley & Sons 2018 25

Computation
• The checksum calculation is defined in RFC 791:[5]

• The checksum field is the 16-bit ones' complement of the ones' complement sum of all 16-bit words in the
header. For purposes of computing the checksum, the value of the checksum field is zero.

• If there is no corruption, the result of summing the entire IP header, including checksum, should be zero.

• At each hop, the checksum is verified. Packets with checksum mismatch are discarded. The router must
adjust the checksum if it changes the IP header (such as when decrementing the TTL).[6]

• The procedure is explained in detail in RFC 1071 "Computing the Internet Checksum". [1]
• Optimisations are presented in RFC 1624 "Computation of the Internet Checksum via Incremental Update"

[2] (with errata), to cover the case in routers which need to recompute the header checksum during packet
forwarding when only a single field has changed.

1. Computing the Internet Checksum. doi:10.17487/RFC1071. RFC 1071.

2.^ Jump up to:a b Computation of the Internet Checksum via Incremental

Update. doi:10.17487/RFC1624. RFC 1624.

https://datatracker.ietf.org/doc/html/rfc1071
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.17487%2FRFC1071
https://en.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc1071
https://en.wikipedia.org/wiki/Internet_checksum#cite_ref-rfc1624_2-0
https://en.wikipedia.org/wiki/Internet_checksum#cite_ref-rfc1624_2-1
https://datatracker.ietf.org/doc/html/rfc1624
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.17487%2FRFC1624
https://en.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc1624

© John Wiley & Sons 2018 26

• Examples

• Calculating the IPv4 header checksum

• Take the following truncated excerpt of an IPv4 packet. The header is shown in bold and the checksum is underlined.
• 4500 0073 0000 4000 4011 b861 c0a8 0001

c0a8 00c7 0035 e97c 005f 279f 1e4b 8180

• For ones' complement addition, each time a carry occurs, we must add a 1 to the sum.[7]

• A carry check and correction can be performed with each addition or as a post-process after all additions.

• If another carry is generated by the correction, another 1 is added to the sum.

• To calculate the checksum, we can first calculate the sum of each 16 bit value within the header, skipping only the checksum field itself.

• Note that these values are in hexadecimal notation.

• 4500 + 0073 + 0000 + 4000 + 4011 + c0a8 + 0001 + c0a8 + 00c7 = 2479c

• The first digit is the carry count and is added to the sum:
• 2 + 479c = 479e (if another carry is generated by this addition, another 1 must be added to the sum)

• To obtain the checksum we take the ones' complement of this result: b861 (as shown underlined in the original IP packet header).

• Verifying the IPv4 header checksum[edit]

• When verifying a checksum, the same procedure is used as above, except that the original header checksum is not omitted.
4500 + 0073 + 0000 + 4000 + 4011 + b861 + c0a8 + 0001 + c0a8 + 00c7 = 2fffd

• Add the carry bits:
• fffd + 2 = ffff

• Taking the ones' complement (flipping every bit) yields 0000, which indicates that no error is detected. IP header checksum does not check for

the correct order of 16 bit values within the header.

https://en.wikipedia.org/wiki/Internet_checksum#cite_note-7
https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/w/index.php?title=Internet_checksum&action=edit§ion=4

6.5.3 Cyclic Redundancy Checks (CRC)

• Checksum: Yazılımda daha kolay, CRC: donanımda daha kolay
• Ör. Ethernet

• Sıralı bitler üzerinde işlem yaparak bir değer üretilir
• Shift register, XOR kapıları

• Mesaj bit dizisi önceden belirlenmiş bir bit dizisine BÖLÜNÜR
• Kalan değer bit dizisinin sonuna eklenir

• Gerçek bir bölüme işlemi değil, aslında XOR işlemi

• Hataları sezer ama yine düzeltemez

• 1000’lerce bitlik mesajda sadece 16-32 bit eklenerek, olabilecek
hataların büyük kısmı tespit edilebilir

© John Wiley & Sons 2018 27

6.5.3 Cyclic Redundancy Checks

• 10luk tabanda bölme işlemi örneği

• Procedure is to add redundant bits to
message, successively multiply by 1 or
0 and XOR.

• Decimal example shown to fix ideas,
but not actually done this way.

• 682 is the “message”, the remainder
of 3 is the error check.

• If message corrupted, receiver will
obtain a different remainder.

© John Wiley & Sons 2018 28

6.5.3 Cyclic Redundancy Checks

• İkilik tabanda bölme

• Üreteç polinomu 4 basamaklı

• Mesaj dizisinin sonuna 3 bit sıfır
eklenir

• Her adımda:
1. 1 veya 0 ile çarp

2. XOR yap

3. Yeni bir bit aşağı indir

4. Sonuna kadar devam et

© John Wiley & Sons 2018 29

6.5.3 Cyclic Redundancy Checks

© John Wiley & Sons 2018 30

Cyclic Redundancy Checks

© John Wiley & Sons 2018 31

6.5.3 Cyclic Redundancy Checks

• Sonunda bir kalan elde edilir (bu
örnekte 3 bit)

• Bu kalan , sondaki 3 bit sıfırın yerine
konur

• Artık bölme işlemi kalansız olacaktır.

• Kaydırma ve çıkarma işlemleri
kaydıran yazmaç ve XOR kapıları ile
yapılır.

© John Wiley & Sons 2018 32

Cyclic Redundancy Checks

• Alıcı aynı işi tekrar eder

• Kalan sıfır olursa hata yoktur

© John Wiley & Sons 2018 33

Cyclic Redundancy Checks

• Alıcı aynı işi tekrar eder

• Kalan sıfır olursa hata yoktur

• Bazen o kadar çok hata olur ki,
bölme işlemi yine kalansız olur
ve bu tespit edilemez. Ancak bu
ihtimal çok çok düşüktür

© John Wiley & Sons 2018 34

© John Wiley & Sons 2018 35

© John Wiley & Sons 2018 36

© John Wiley & Sons 2018 37

© John Wiley & Sons 2018 38

