Problem 5.3.5

Random variables N and K have the joint PMF

Py g(n,k) = n=12,.
0 otherwise.
Find the marginal PMFs Pn(n) and Pg(k).
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Problem 5.4.2

N
Random variables X and Y have joint PDF
6e—(22+3y) 2 >0,y >0,
i\ 8 = - T —~— \
fxy (@) {0 otherwise. T

(a) Find P[X > Y])and P[X +Y < 1].
" (b) Find P[mintX,Y) > 1].

[N
(c) Find P[max(X,Y) < 1]. 7 )
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Problem 5.5.5 [l

X and Y are random variables with the joint PDF

5g2/2 —1Se<L ‘ i
fxy(,y) = { Osy<z® R\ =y
0 otherwise. ._J,}%‘ ‘\ . ﬁ\\,\?%

(a) What is the marginal PDF fx(z)? - ‘j““‘-—)
(b) What is the marginal PDF fy(y)? |
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Example 5.8 Problem
g7
Find the joint CDF Fx y(z,y) when X and Y have joint PDF Y

Y
14 S, .V@

() \ fxy @y) = {3 gt‘;eyn;;“ (5.22)
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Problem 5.5.9

X and Y have the joint PDF

ey \
r x, —_— .
fxy(@y) 0  Stherwise

(a) Draw the region of nonzero probability.
(b) What is the value of the constant ¢?
(c) What is Fx(z)?

(d) What is Fy(y)?

(e) What is P[Y < X/2]?
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Problem 5.6.7 O

In terms of a positive constant k, random variables X and Y have joint
PDF

o —1/2<z<1/2,
fxy(@y) =835 1)
| 0 otherwise.

(a) What is k7 _WKmeigiv
. . , |
(b) What is the marginal PDF of X7 J'\ NN

(c) What is the marginal PDF of Y7 =
(d) Are X and Y independent? \ s
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Problem 5.6.8 L

X3y and X5 are independent, identically distributed random variables with
PDF T

x/2 0<x<2,
7 —
Ix (@) {o otherwise.
(a) Find the CDF, Fx(x).
(b) What is P[X; < 1,X5 < 1], the probability that X; and X, are both

less than or equal to 17
(c) Let W = max(X1,X52). What is Fy,(1), the CDF of W evaluated at

w=17
(d) Find the CDF Fw(;i)). X o
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Problem 5.7.5

X and Y are random variables with E[X] = E[Y] = 0 and Var[X] = 1,
Var[Y] = 4 and correlation coefficient p = 1/2. Find Var[X + Y].
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Problem 5.7.9 C

o
‘h“

X and Y are identically distributed random variables with| Ef
and covariance Cov[X,Y] = 3 and correlation coefficient py.

nonzero constants a and b,@ and YV = bY.
(a) Find Cov[U,V].

(b) Find the correlation coefficient pyy .

(c) Let W =U+V. For what values of a and b are X and W uncorrelated?
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Problem 5.7.10 O

True or False: For i i 1S ed random variables Y7 and Y> with
E[Y1] = E[Y2] = 0{Var[Y1 + Y5] > Var[Y;].

—> Var (Y4 h ) — \/%ﬁ/,)ﬁa\fg\/v) + 1 Cov (Y( N.)
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Problem 5.7.11 L]

X and Y are random variables with E[X] = E[Y] = 0 such that X has
standard deviation ox = 2 while Y has standard deviation oy = 4.
(a) For V=X -Y, ~What are the smallest and lar rgest possible values of

(b)\l:/[;]—X 2Y, what are the smallest and largest possible values of
Var[W]?
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Problem 527.13 O

N\

Random variables X and Y have joint PDF

522/2 —-1<z<1;
Ixy(z,y) = 0<y<2?,
0 otherwise.

Answer the following questions.
—> (a) What are E[X] and Var[X]?

(b) What are E[Y] and Var[Y]?

(c) What is Cov|[X,Y]?

(d) What is E[X + Y]?

(e) What is Var[X +Y]7?

Q) éh% ,Px(q)i; IQLA{QLLW,"

sj)((”)ig\ LX J(Z,L:j) é_\j
E[Xl’ Xf___?filix
L







| = | ¥=-1 9"
J[ 5xy” )4)‘ _f.;ﬂx
X = 1 J = ﬁ’ l{
e 3y ' ;
?“@“l )
d) Eley) - Elx) TE[\/] J£ .5
Iy 1y J
(’,) V&r()(—k\{) Vo(()\ "'\/QF(Y) Zgﬁ)
5/?_ O*Uq O
= 0.9¢€
[ |

Problem 5.7.14

Random variables X and Y have joint PDF j_.

_J2 o<y<z<,
fX,Y(“:’y)_{o otherwise.

(a) What are E[X] and Var[X]?
(b) What are E[Y] and Var[Y]?
(c) What is Cov[X,Y]?

(d) What is E[X + Y]?

(e) What is Var[X +Y]?




Problem 5.7.15 L

A transmitter sends a signal X and a receiver makes the observation
Y = X + Z, where Z is a receiver noise that is independent of X and
E[X] = E[Z] = 0. Since the average power of the signal is E[X?] and the
average power of the noise is E[Z2], a quality measure for the received
§j§nal is the signal-to-noise ratio -
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Problem 5.8.6

The random variables X and Y have joint PMF

Y
4 Pxy(z,y) ol
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B[t L. L, L
Find ‘1— 4— A

(a) The expected values E[X] and E[Y],
(b) The variances Var[X] and Var[Y],
(c) The correlation, rxy = E[XY],

(d) The covariance, Cov[X,Y],

(e) The correlation coefficient, py y.
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¥

Random variables X and Y have joint PDF

12 1 @S L g
fxy(z,y) = {0 otherwise. 1

Find rxy and E[eX*Y]. T T
k‘w




Problem 5.9.4

X1 and X, are identically distributed Gaussian (0,1) random

X"!:t\)__ Q_;(J"\f
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Problem 5.8.10 &

Random variables N and K have the joint PMF

(1-p)" p/m k=1,
Py g(n, k) = n=1,2,...,
0 otherwise.

Find the marginal PMF Py(n) and the expected values E[N], Var[N],
E[N?], E[K], Var[K], E[N + K], ry k., Cov[N, K].
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Problem 5.9.5 L

Random variables X and Y have joint PDF
o— (222 —4ay+4y?)

Ixy(z,y) =
c\ ;':_,I"x v !Jlf ’\-

(a) What are E[X] and E[Y]?
L—(b) Find the correlation coefficient px y.
'%c) What are Var[X] and Var[Y]?

(d) What is the constant ¢?
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Problem 5.9.6 l

An archer shoots an arrow at a circular target of radius 50 cm. The arrow
pierces the target at a random position (X,Y), measured in centimeters
from the center of the disk at position (X,Y) = (0,0). The bullseye is a
solid black circle of radius 2 cm, at the center of the target. Calculate
the probability P[B] of the event that the archer hits the bullseye under
each of the following models: -

t//(a) X and Y are iid continuous @m (—-—5_@ random variables.
(b) The PDF fx y(x,y) is uniform over the 50 cm circular target.
(c) X and Y ar%ﬁ% Gaussian (u = 0,0 = 10) :ando_m)\sg;ijbles.
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Problem 5.10.7 [ |

X1, X5, X3 are iid exponential (A) random variables. Find:
(a) the PDF of V = min(Xq, X5, X3),
(b) the PDF of W = max(X1, X», X3).
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Problem 5.10.9 &
Random variables Xq, Xo,..., Xn are each X; has CDF Fx(z) and
PDF fx(z). Consider o

T —

s e

Un - maX(Xl ..... Xrn)
In terms of@nd/o@
(a) Find the C Fir (u). '

(b) Find the CDF Fy, (1).
(c) Find the joint CDF Fy, 1, (l,u).
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Problem 5.10.6 [

The joint PMF of X, Y,and Z, the number of 1-page, 2-page, and 3- -page downloads,
respectively, in each of four downloads is given by
e ——

et o= * 311 L) PN,

Pxyz(z,y,2z) = (x,y, z) 3T oG o

——=>>(a) In a group of four downloads, what is the PMF ofthentimber of 3-page documents?

(b) In a group of four downloads, what is the expected number of 3-page documents?

(c) Given that there are two 3-page documents in a group of four, what is the joint

PMF of the number of 1-page documents and the number of 2-page documents?

(d) Given that there are two 3-page documents in a group of four, what is the expected
number of 1-page documents?

(e) In a group of four downloads, what is the joint PMF of the number of 1l-page

documents and t number of 2-page documents?
. )z 3 pa
@_ JOVP R R A A2

2
) B (37 vgn )
F”;—‘—-— n =

§ 7 -
P (2] {‘;) &Y B

c) /ol LdDWVQ)w& ve buallar ‘K)‘?’g&

) & |
[" Y/ =[5

X T ﬁ
. /’ e
[ N
ﬁw@@, o) (5) (6 xsefnd




Problem 5.9.9 &

Your course grade depends on two test scores: X; and X»>. Your score
X, on test i is Gaussian (p = 74,0 = 16) random variable, independent
of any other test score. 6% ~9,564
(a) With equal weighting, grades are determined by Y = X1/2 4+ X»/2.
You earn an A if Y > 90. What is P[4] = P[Y > 90]?
(b) A student asks the professor to choose a weight factor w, 0 <w < 1,
L~ such that o

Y =wX; + (1 —w)Xo.

Find P[A] as a function of thq weight w. What value or values of w
maximize P[A] = P[Y > 90]7 /="

(c) A different student proposes that the better exam is the one that
should count and that grades should be based on M = max(Xq, X»).
In a fit of generosity, the professor agrees! Now what is P[A] =
P[M > 90]7

(d) Fow generous was the professor? In a class of 100 students, what is
the expected increase in the number of A's awarded?
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Problem 6.1.5 O
|
Let X and Y be discrete random variables with joint PMF ' Q
001 z=1,2...,10, - -
Pxy(z,y) = y=1,2...,10,
0 otherwise.

What is the PMF of W = min(X,Y)?

Problem 6.1.6 C
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Problem 6.2.6 O

Let X denote the position of the pointer after a spin on a wheel of
circumference 1. For that same spin, let Y denote the area within the
arc defined by the stopping position of the pointer:

2r — |
i—-v:.,?
1T
A=nc=1 L
Lt
A =L

(a) What is the relationship between X and Y7
(b) What is Fy(y)?
(c) What is fy(y)?
(d) What is E[Y]?
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Problem 6.2.8 |

X is §he uniform (0, 1) random variable. Find a function g(z) such that
the PDF of Y =7g(X) is

-

) 32 o<y<1,
Q(y) o {O otherwise.
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Problem 6.2.11 C




Problem 6.3.2 N

In a 50 km cycling time trial, a rider's exact time 7", measured in minutes,
is the continuous uniform (50,60) random variable. However, a rider's
recorded time R in seconds is obtained by rounding up T to next whole
second. That is, if T is 50 minutes, 27.001 seconds, then R = 3028
seconds. On the other hand, if T' is exactly 50 mlrgiifi 27 seconds, then
R =3027. What is the PMF of R? , T
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Problem 6.3.7 L
I
The input voltage to a rectifier is the continuous uniform m randoF/ )
[#TE2N

variable U. The rectifier output is a random variable W defined by y
- z
0 U<DO,
{ W =g(U) = { J - , N

U UZ>0.

Find the CDF Fy(w) and the expected value E[W]. '1’/\
N
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Problem 6.3.10 ]

The current X across a resistor is the continuous uniform (—2,2) random
variable. The-power disstpated in the resistor is Y = 9X2 Watts.

(a) Find thnf Y.

(b) A power measurement Circuit is range-limited so that its output is

Find the PDF of W. ? !)L_)










Problem 6.4.5 O

Random variables X and Y have joint PDF
_Joy O S@S 1,
Ixy(@y) = {0 otherwise.
Let W =Y - X. '

(a) What is Sy, the range of W7
(b) Find Fy(w) and fyw).
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Problem 6.4.8 O

In a simple model of a cellular telephone system, a portable telephone is
equally likely to be found anywhere in a circular cell of radius 4 km. (See
Problem 5.5.4.) Find the CDF Fg(r) and PDF fg(r) of R, the distance
(in km) betw one and the base station at the center of the




Problem 6.4.9 ]

X and Y are independent identically distributed Gaussian (0 1) random
variables. Find the CDF of }¥ = X2 4 Y2, _..3 /
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Problem 6.4.11 &

X is the Gaussian (0,1) random variable and_Z, independent of X, has \}((
4

PMF Z=-l &N =-X
o ]_—p Z=_19
PZ(Z)‘{p L PR\ P
Find the PDF of Y = ZX.
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Problem 6.4.13 Q

For a constant a > 0, random variables X and Y have joint\)?DF

' 0< z,y <a,
fxy(z,y) w e,

0 otherwise. |
| \
Find the CDF and PDF of random variable /0\2. i
XY
—> W=max|—,—]).
&”X) — S
Hint: Is it possible to observe W < 17 (H;\\mz) \ 2 X
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Problem 6.5.3 B

Find the PDF of W = X 4+ Y when X and Y have the joint PDF

2 0<z<Ly<1,
0 otherwise.

Ixy(z,y) = {
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Problem 6.5.5 d

Random variables X and Y are independent exponential random variables
N with expected values E[X] = 1/A and E[Y] = 1/u. If u # A, what is the
PDF of W =X4Y7 If p = A, what is fy(w)?
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Problem 7.1.5 O

Every day you consider going_jogging. Before each _mile, including the
first, you will quit with probability\, independent of the number of miles
you have already run. However, you are sufficiently decisive that you
never run a fraction of a mile. Also, we say you have run a marathon
whenever you run at least 26 miles.
~€a) Let M equal the number of miles that you run on an arbitrary day.
Find the PMF Py (m).
L~(b) Let r be the progability that you run a marathon on an arbitrary day.
Find r. 245
c) Let J be the number of days in one year (not a leap year) in which you
run a marathon. Find the PMF Pj(j3). This answer may be expressed
in terms of r found in part (b).
(d) Define K = M —26. Let A be the event that you have run a marathon.
Find PKM(Ic). o
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Problem 7.1.7 [

A test for diabetes is a measurement X of a person’s blood sugar level following an
overnight fast. For a healthy person, a blood sugar level X in the range of 70 — 110
mg/dl is considered normal. When a measurement X is used as a test for diabetes,
the result is called positive (event T1) if X > 140; the test is negative (event 77) if
X <110, and the test is ambiguous (event 7°) if 110 < X < 140.

Given that a person is healthy (event /1), a blood sugar measurement X is the Gaussian
(90,20) random variable. Given that a person has diabetes, (event D), X is the Gaussian
{60,40) random variable. A randomly chosen person is healthy with probablllty P[H] =
0.9 or has diabetes with probability P[D] =10.1"

““(a) What is the conditional PDF [y (z)2—=
L‘-— |
(b) Calculate the conditional probabilities P[T|H], P[I‘lH]
.—(c) Find P[H|T~], the conditional probabili a pers Ithy given the event

of a negative test.

(d) When a person has an ambiguous_test result (7°), the test is repeated, possibly
many times, until either a positive TF or negative 7~ result is obtained. Let N
denote the number of times the test is g[ven Assuming that for a given person the

PMF of N given event I/ that a |
has a positive 7't or negatlve T~ résu

FXIH(%) = ( C?O] ’LQ)

%xh)(u') - N(\éo,Q@)
PlH)=va  PLpl=0" L
R wﬁx\w(ﬁ“ | H(x -%)éb

«. Note that N = 1 if the person
test.
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Problem 7.2.4

Y is the exponential (0.2) random variable. Given A = {Y < 2}, find:

(@) fyA(y),
(b) E[Y|A]. o ;
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Problem 7.2.6 ||

The number of pages X in a document has PMF

015 z=1[(2,30)
Px(z) =101 2=589,7@))
0 otherwise.

A firm sends all documents with an even number of pages to printer A

and all documents with an odd number of pages to printer B.

(a) Find the conditional PMF of the length X of a document, given the
document was sent to A. What are the conditional expected length
and standard deviation?

(b) Find the conditional PMF of the length X of a document, given the
document was sent to B and had no more than six pages. What are
the conditional expected length and standard deviation?
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Problem 7.2.8 O

W is the Gaussian (0,4) random variable. Given the event C = {W > 0},
find the conditional PDF, fy,(w), the conditional expected value, E[W|C],
and the conditional variance, Var[W|C].
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Problem 7.2.9 B

The time between telephone callsata t hone switch is the exponential

random variable T with expected valuel0.0)—> N =|©
(a) What is E[T|T > 0.02], the conditional expected value of T'?

(b) What is Var[T|T > 0.02], the conditional variance of T'7
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Problem 7.2.10 [ |

As the final rider in the final 60 km time trial of the Tour de France, Roy
must finish in time T" < 1 hour to win the Tour. He has the choice of
bike made of (1) carbon fiber or (2) titanium. On the carbon fiber bike,
his speed V_over the course is the continuous uniform random variable
with E[V] = 58 km/hr and Var[V] = 12. On the tltam m blker \/ is the,...'('[;,n
exponential random variable with E[V] = 60 km/hr. \:h Aot

(a) Roy chooses his bike to maximize P[W], the probability he wins the

Tour. Which bike does Roy choose and what is P[W]?
(b) Suppose instead that Roy flips a fair coin to choose his bike. What

is P[W]7? b
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Problem 7.3.1 o

e

X and Y are.independent.identical\discrete/uniform (1,10) random vari-
ables. Let A denote the event t ,Et min(X,Y) > 5. Find the conditional

PMF Py ya(z,y). R
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Problem 7.3.5

X and Y have joint PDF

Ixy(z,y)=

s <D

(a) What is P[A]?
(b) Find fy ya(z,y).
(c) Find fxm(m) and fyA(y).

0<y=<2

(x+y)/3 0<z<1,
0 otherwise.
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Problem 7.3.9 6

X and Y are_independent random variables with PDFs

£ () = {2::: 0<z<1,

’y 0<y<1,
fY(y) { otherwise. ! %

Letfd »
—= (3) What areB(X] and E[Y]?

— (b) What are E[X|A] and E[Y|A]?
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Problem 7.4.8 [

Y = ZX where X is the Gaussian (0,1) random variable and Z, indepen-
dent of X, has PMF

1-— z=—1,
Py(2) ={ bos=
P = 1.

True or False:
(a) Y and Z are independent. EVTT (\é’ \.'E\)

(b) Y and X are independent.l*}‘km\g
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Problem 7.4.13 @

Packets arriving at an Internet router are either.voice packets (v) or data
packets (d). Each packet is a voice packet with probability p, independent
of any other packet. Observe packets at the Internet router until you see
two voice packets. Let M equal the number of packets up to and including
the first voice packet. Let N equal the number of packets observed up
to and including the second voice packet. Find the conditional PMFs
Pyrin(m|n) and Py p[n|m). Interpret your results.

M Gommaict)  Pyled= (00 5

R@A=(0) 1) < pop = m\ ()

e T
7o "c,,&:)

"o ‘ 4

P\'U' FTOoOen ’\Y >M



- Purada { vp Var

n—q "
\ 1 — U A e B L ?
?MLN (m A\ N - /V/b%
/17
O O ~LOo
\'—‘_-/_,,_ N

(m\[m\-:: ?(n‘;f\f;dxa_, 2. Vep minerde 1 V_?,)
NLM

Ao snoen Q ata \}Pz O\GS\QAESU
Vpl < > /N
—f et -~ - | — e
| 1 3) v~ | ey -
\\ R ’ | slsh
Vel nome s ee
§" c;m'k‘cg

P , nNYm N-M Gesmednl. (P)

e \J‘{J gﬂib@ni&
Sureq a&“;\fu\’dbf"

Problem 7.5.3 L

The probability model for random variable A is

1/3 a= -1,
Py(a) =142/3 a=1,
0 otherwise.
The conditional probability model for random varia 2
1/3b6=0,
Ppx(b] - 1) b=1,
otherwise,

(a) What is the probability model for random variables A and B? Write
the joint PMF Py p(a,b) as a table.

(b) If A =1, what is the conditional expected value E[B|A = 1]7

(c) If B =1, what is the conditional PMF Py g(al1)7?

(d) If B =1, what is the conditional variance Var[A|B = 1] of A7

(e) What is the covariance Cov[A, B]?
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Problem 7.5.6 O

Random variables X and Y have joint PDF

1/2 —-1<z<y<1l,
fx,Y(x,y)={/ ST=VY>

0 otherwise.
(a) What is fy(y)?
(b) What is fxy(z|y)? _ J q\
(c) What is E[X|Y = y]? I (R
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Problem 7.6.2

X and Y are jointly Gaussian rando bles with E[X] = 0 and
Var[X] = Var[Y] = 1. Furthermore, E[Y|X] X /2. Find
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Problem 10.1.1 o

Xq1,...,Xp is ansequence of expanential. random variables, each with

expected value 5.
(a) What is Var[Mg(X)], the variance of the sample mean based on nine

trials?

(b) What is P[X; > 7], the probability that one outcome exceeds 77

(c) Use the central limit theorem to estimate P[Mg(X) > 7], the proba-
bility that the sample mean of nine trials exceeds 7.
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Problem 10.1.2 - o
X1,..., X, f endent uWariables with expected val@nd
variance(Var[X] = 3.
(a) Whatmi of X7

(b) What is Var[M;6(X)], the variance of the sample mean based on 16 trials?

(c) What is P[X; > 9], the probability that one outcome exceeds 97

(d) Would you expect P[M15(X) > 9] to be bigger or smaller than P[X; > 9]7 To check
your intuition, use the central limit theorem to estimate
P[Mie(X) > 9).
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Problem 10.2.1 o

st

The weight of a randomly chosen Maine bl ected value
E[W] = 500 pounds and standard deviation( oy = 100 pounds. )Use the
Chebyshev inequality to upper bound the proba eight of a

randomly chosen bear is more than 200 pounds from the expected value

of the weight. =
el \W—-'E[wlhi ) & Varlw]
g | |

Clhebyshers | n,e,qmgﬁgf,ln

e 13500 /
) :QW ~E[w}\) ‘>lm> < (@
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Problem 10.2.2 °

For an arbitrary random variable X, use the Chebyshev inequality to show
that the probability that X is more than k standard deviations from its
expected value E[X] satisfies

PIX — ELX]| > kol <

For a G ' Y, use the CD() function to calculate
the probability that Y is more than k standard deviations from its ex-
pected value E[Y]. Compare the result to the upper bound based on the

Chebyshev inequality. _ S
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Problem 10.3.1 o

Let X4,X5,... denote an iid sequence of random variables, each with

expected value 75 and standard deviation 15.

(a) How many samples n do we need to guarantee that the sample mean
Mp(X) is between 74 and 76 with probability 0.997

(b) If each X; has a Gaussian distribution, how many samples n’ would
we need to guarantee M,,(X) is between 74 and 76 with probability

o eImM (01215

tl N(X) 75]> L]\<
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Problem 10.3.2 o

Let X4 be the indicator random variable for event A with probability
P[A] = 0.8. Let P,(A) denote the relative frequency of event A in n
independent trials.

(a) Find E[X 4] and Var[X4].

(b) What is Var[P,(A)]?

(c) Use the Chebyshev inequality to find th confidence coefficient, 1 — «
such that Pjggo(A) is within 0.1 of P[A]. In othér words;—find « such
I

that

P |Pioo(4) —P[4]| <0.1] > 1 -0

(d) Use the Chebyshev inequality to find out how many samples n are
necessary to have P,(A) within 0.1 of P[A] with confidence coefficient
0.95. In other words, find n such that

p ”ﬁﬂ(m —P [A]| <0.1] >0.95.
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Problem 10.4.1 A

XN\NC]“‘,Q'D

When X is Gaussian, verify Equation (10.24), which states that the sam-
plé is within_one standard error of the expected value with proba-

bilify 0.68. ) |~
Ma (] = X1+ -+ X,

.

o

Vsr(Mn(x]> = Var(x) = o
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Problem 7.1.6

A random ECE student has height X in inches given by the PDF
4e—(@—=70)%/8 4 —(2-65)°/8

fx(z) = 5v/87 @ ,L

(a) Sketch fx(x) over=the-interval 60 <z < 75. (For purposes of sketch-

ing, note thd
(b) Find the probability that a random ECE student is less than 5 feet 8
inches tall. Erinca >
(c) Use conditional PDFs to explain why fx(z) might be a reasonable "‘2
model for ECE students. _ (')( 93&7/ ' -(7&6 5)/@
; — %
)‘?X (1,) - 0, Cé b e
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Problem 7.2.4 o

Y is the exponential (0.2) random variable. Given A = {Y < 2}, find:

(@) fy1a(y),
(b) E[Y]A].




Problem 7.2.8 O

W is the Gaussian (0,4) random variable. Given the event C = {W > 0},
find the conditional PDF, fy{w), the conditional expected value, E[W|C],
and the conditional variance, Var[W|C].
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Problem 7.3.4 B
N and K have joint PMF
(1-p)*1p n=12,..
PN,K(nak) ] n k=1,....n,
0 otherwise.

Let B denote the event that N > 10.

(a) Find the conditional PMFs Py p(n) and Py x| p(n, k). Which should
you find first?

(b) Find the conditional expected values E[N|B], E[K|B], E[N + K|B],
Var[N|B], Var[K|B], E[NK|B . EEN]B]TEELIB:Z

P(B] = P(N ) = Z 2 (-p)
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Problem 7.4.9 O

At the One Top Pizza Shop, mushrooms are the only topping. Curiously,
a pizza sold before noon has mushrooms with probability p = 1/3 while a
pizza sold after noon never has mushrooms. Also, a pizza is equally likely
to be sold before noon as after noon. On a day in which 100 pizzas are
sold, let N equal the number of pizzas sold before noon and let M equal
the number of mushroom pizzas sold during the day. What is the joint
PMF Py n(m,n)? Are M and N independent? Hint: Find the conditional

PMWn N.
N > M g\cl,ug be L

PM\:\)(MIH) - - =
P(NTM Ioa-—n

)= () (5)(3)

o) = Py (o) P(“

T ) 5

10 o



Problem 7.5.5 -

Random variables N and K have the joint PMF
100"~ 190  n=0,1,..;

PN_K(’I’Z,, k) == { (ﬂ""lj! k=0, =%,

0 otherwise.

(a) Find the marginal PMF Py(n) and the conditional PMF Py n(k|n).

(b) Find the conditional expected-vatie E[K|N = n].

(c) Express the random variablg 3ds a function of N and use the
iterated expectation to find E[K].
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