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A Game Theoretic Approach to Channel Switching
in the Presence of Jamming

Berk Bozkurt, Ahmet Dundar Sezer, Sinan Gezici, and Tolga Girici

Abstract—In this letter, a channel switching problem is inves-
tigated in the presence of jamming based on a game theoretic
approach. First, a convex formulation of the optimal channel
switching problem is proposed for a given jamming strategy.
Then, considering a fixed channel switching strategy, an explicit
solution of the optimal jammer power allocation problem is
obtained. Consequently, a game theoretic formulation is proposed
and the existence of a pure-strategy Nash equilibrium is shown
for the proposed channel switching game between the transmitter
and the jammer.

Index Terms—Channel switching, jamming, Nash equilibrium,
capacity, time-sharing, power allocation.

I. I NTRODUCTION

In the availability of multiple communication channels, a
transmitter and a receiver can perform channel switching (i.e.,
time-sharing) among different channels by communicating
over only one channel at a given time [1]–[3]. As motivated in
[3], channel switchingis applied in various scenarios such as
in cognitive radio networks, where secondary users can utilize
frequency bands of primary users when they are available.

Via channel switching, performance improvements can be
achieved in terms of various performance metrics such as
the average probability of error, throughput, and channel
capacity. In [1] and [2], the aim is to perform optimal channel
switching for minimizing the average probability of error.For
example, [1] focuses on an average power constrained binary
communication system and shows that the average probability
of error is minimized by either communicating over one
channel exclusively, or switching between two channels with
a certain time-sharing factor. The work in [4]–[6] considers
channel switching in the context of opportunistic spectrum
access in cognitive radio networks.In the presence of multiple
frequency bands and channel switching constraints, through-
put performance of various bandwidth allocation strategies
is investigated in [6]. To maximize the average Shannon
capacity between a transmitter and a receiver, optimal channel
switching problems are proposed in [3], [7], [8], considering
Gaussian channels and the presence of average and peak power
constraints. It is shown in [3] that an optimal channel switching
strategy can be realized by utilizing at most two different
channels. Extensions of the optimal channel switching problem
in [3] are performed by considering channel switching delays
in [7] and the presence of multiple users in [8].

Although the optimal channel switching problem for aver-
age Shannon capacity maximization is investigated in [3], the
presence and effects of jamming have not been considered.
In this letter, we focus on the channel switching problem
in the presence of a jammer, and propose a game theoretic
approach by deriving the optimal strategies for both the
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channel switching problem in the presence of jamming and
the jamming problem for a given channel switching strategy.
In the literature, there exist various game theoretic investiga-
tions of anti-jamming problems in the presence of multiple
channels, which employ Stackelberg equilibrium, Markov de-
cision process (MDP), and Nash equilibrium concepts [9]–
[11]. However, they do not employ the average capacity
metric in the utility functions and the channel switching
approach adopted in this manuscript. In addition, based on a
hierarchical approach, Stackelberg game formulations between
users and jammers are proposed in [12]–[14]. For example,
a hierarchical power control algorithm is developed in [12]
to obtain the Stackelberg equilibrium by modeling the user
as the leader and the jammer as the follower. The studies in
[12]–[14] differ from our manuscript since they employ the
Stackelberg equilibrium concept and different utility functions
in the absence of channel switching. Without any hierarchy or
commitment assumptions, we employ the Nash equilibrium
concept in this work, where players announce their strategies
simultaneously (also see Footnote 2). The main contributions
of this letter are as follows:
• The optimal channel switching problem in the presence

of a jammer is formulated under average and peak power
constraints, and an equivalent convex optimization problem
is obtained (Proposition 1) for the first time in the literature.

• For a given channel switching strategy, the optimal power
allocation problem for the jammer is formulated as a con-
vex optimization problem and its solution is characterized
explicitly (Proposition 2).

• A channel switching game is formulated between the trans-
mitter and the jammer, and it is shown that the game admits
at least one pure-strategy Nash equilibrium (Proposition 3).
Also, how to calculate the Nash equilibrium is discussed.

II. SYSTEM MODEL

Consider a communication system in which a transmitter
and a receiver communicate with each other via channel
switching amongK different channels (frequency bands).
In particular, the transmitter and the receiver can switch
amongK channels to enhance the average capacity of the
communication system as in [3]. In this channel switching
approach, only one channel is utilized for the communication
between the transmitter and the receiver at any given time,
and the transmitter informs the receiver about the occupied
channel in order for the receiver to be synchronized during
communication [3]. The channels are modeled as flat-fading
additive Gaussian noise channels with various bandwidths and
constant power spectral density levels. Besides the transmitter
and the receiver in the communication system, there exists a
jammer which tries to reduce the average channel capacity
between the transmitter and the receiver. It is assumed that
the jammer transmits zero-mean Gaussian noise with constant
power spectral density levels over the considered channel
bandwidths [15], [16] for distorting the communication be-
tween the transmitter and the receiver, and that the jammer
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can transmit over multiple channels in parallel at a given time
In other words, although the transmitter and the receiver com-
municate with each other by employing time-sharing among
channels, the jammer concurrently transmits noise over the
channels that are considered in the jamming strategy during
the whole communication duration.

III. F ORMULATION AND GAME THEORETICANALYSIS

Consider the presence ofK channels that are available
between the transmitter and the receiver for communication
via channel switching, as described in Section II. For channel
i, let Bi andNi/2 denote, respectively, the bandwidth and the
constant power spectral density level of the additive Gaussian
noise, wherei ∈ {1, . . . ,K}. Also, let hT

i andhJ
i represent

the complex channel gains related to channeli from the
transmitter to the receiver and from the jammer to the receiver,
respectively. Then, the capacity of channeli between the
transmitter and the receiver in the presence of the jammer is

Ci(P
T , P J) = Bi log2

(
1 +

∣∣hT
i

∣∣2PT

∣∣hJ
i

∣∣2P J +NiBi

)
bps (1)

wherePT andP J represent the average transmit powers of
the transmitter and the jammer, respectively.

A. Optimal Channel Switching in the Presence of Jammer

In order to formulate the optimal channel switching problem
in the presence of the jammer, time-sharing (channel switch-
ing) factors are defined asλ1, . . . , λK , whereλi represents
the fraction of time when channeli is utilized by the trans-
mitter for communication with the receiver. Then, the optimal
channel switching problem in the presence of the jammer can
be expressed for a given jamming strategy as follows:

max
{λi,P

T

i
}K

i=1

K∑

i=1

λi Ci(P
T
i , P J

i ) (2a)

subject to
K∑

i=1

λi P
T
i ≤ PT

av , (2b)

PT
i ∈ [0, PT

pk] , ∀i ∈ {1, . . . ,K} (2c)
K∑

i=1

λi = 1, λi ≥ 0, ∀i ∈ {1, . . . ,K} (2d)

where Ci(P
T
i , P J

i ) is as in (1),PT
i and P J

i represent the
average transmit powers allocated to channeli by the trans-
mitter and the jammer, respectively,PT

pk denotes the peak
power limit of the transmitter, andPT

av represents the average
power limit for the transmitter. The average power constraint
at the transmitter can be regarded as the power consumption
constraint and/or the battery life constraint at the transmitter.
On the other hand, the peak power constraint corresponds
to the maximum power level that can be delivered by the
transmitter circuitry (i.e., a hardware constraint) [3].

Unlike [3], which considers a similar problem to that in
(2) (see [3, eqn. (2)]) and proposes a solution based on the
optimality of channel switching between at most two different
channels, we transform the problem in (2) into an equivalent
problem and prove its convexity in the following proposition.

Proposition 1: For a given jamming strategy denoted by
{P J

i }
K
i=1, the optimization problem in(2) can be transformed

into the following problem:

max
{λi,P̃

T

i
}K

i=1

K∑

i=1

λi Ci

(
P̃T
i /λi , P

J
i

)
(3a)

subject to
K∑

i=1

P̃T
i ≤ PT

av , (3b)

P̃T
i ≥ 0, P̃T

i − λiP
T
pk ≤ 0, ∀i ∈ {1, . . . ,K} (3c)

K∑

i=1

λi = 1, λi ≥ 0, ∀i ∈ {1, . . . ,K} (3d)

whereP̃T
i , λiP

T
i for i ∈ {1, . . . ,K}. The problem in(3) is

a convex optimization problem.
Proof: Based on the definitioñPT

i , λiP
T
i , (2) can

be transformed into (3). Then, to prove the concavity of the
objective function in (3a), we defineβi , P̃T

i for notational
simplicity and obtain the following relation for anyα ∈ (0, 1),{
λ
(1)
i , β

(1)
i

}K
i=1

, and
{
λ
(2)
i , β

(2)
i

}K
i=1

:

K
∑

i=1

(

αλ
(1)
i

+ (1− α)λ
(2)
i

)

Ci

(

αβ
(1)
i

+ (1− α)β
(2)
i

αλ
(1)
i

+ (1− α)λ
(2)
i

, P
J

i

)

≥ α

K
∑

i=1

λ
(1)
i

Ci

(

β
(1)
i

λ
(1)
i

, P
J

i

)

+ (1− α)
K
∑

i=1

λ
(2)
i

Ci

(

β
(2)
i

λ
(2)
i

, P
J

i

)

where theinequality follows from the concavity ofCi(x, P
J
i )

with respect tox ≥ 0 (see (1)).Hence,the objective function
in (3a) is shown to be concave. (The functionλi Ci(x/λi, P

J
i )

can be regarded as theperspective[17] of Ci(x, P
J
i ) and

its concavity follows from the concavity ofCi(x, P
J
i ).) In

addition, it is noted that all the constraints in (3) are linear.
Therefore, (3) is a convex optimization problem. �

Based on Proposition 1, the solution of the optimization
problem in (2) can be obtained by solving the optimization
problem in (3). Since (3) is a convex optimization problem,
it can efficiently be solved by interior-point methods, which
are very fast in practice. Once the solution of (3) is obtained,
the solution of (2) can be calculated based on the definition
P̃T
i , λiP

T
i for i = 1, . . . ,K.

Remark 1: The formulation of the optimal channel switch-
ing problem as the convex problem in Proposition 1 has not
been available in the related studies such as [3], [7], which
employ different algorithms to obtain the optimal channel
switching strategy by utilizing at most two different channels.
When Nash equilibria of the channel switching game between
the transmitter and the jammer involve channel switching
among more than two channels, such equilibria cannot be
obtained without the formulation in Proposition 1 (cf. Table I).

B. Optimal Jamming Strategy against Channel Switching

For a given channel switching strategy between the trans-
mitter and the receiver specified by{λi, P̃

T
i }Ki=1, the optimal

jamming strategy problem can be formulated as follows:

min
{PJ

i
}K

i=1

K∑

i=1

λi Ci(P̃
T
i /λi, P

J
i ) (4a)

subject to
K∑

i=1

P J
i ≤ P J

tot , (4b)

P J
i ≥ 0 , ∀i ∈ {1, . . . ,K} (4c)
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where P J
i denotes the average transmit power allocated to

channeli by the jammer as in (2), andP J
tot represents the total

power limit of the jammer. Since the jammer can emit signals
to all the channels simultaneously, a total power constraint is
employed in (4) instead of the average power constraint in (2).

The problem in (4) is specified as a convex problem and its
solution is presented in the following proposition.

Proposition 2: For a given channel switching strategy
denoted by{λi, P̃

T
i }Ki=1, the problem in (4) is a convex

optimization problem with the following solution:

P̄ J
i = max

{(√√√√
(∣∣hT

i

∣∣2 P̃T
i

2
∣∣hJ

i

∣∣2λi

)2

+

∣∣hT
i

∣∣2 BiP̃T
i

ln(2)
∣∣hJ

i

∣∣2 γ

−
NiBi∣∣hJ

i

∣∣2 −

∣∣hT
i

∣∣2 P̃T
i

2
∣∣hJ

i

∣∣2λi

)
, 0

}
, ∀i ∈ {1, . . . ,K} (5)

whereP̃T
i /λi , 0 for λi = P̃T

i = 0, andγ is a Karush-Kuhn-
Tucker (KKT) multiplier, which is calculated by solving

K∑

i=1

P̄ J
i = P J

tot . (6)

Proof: Based on the expression in (1), the second-order
derivative ofCi(x, P

J
i ) with respect toP J

i can be shown to
be positive for allP J

i ≥ 0, x ≥ 0, andi ∈ {1, . . . ,K}; hence,
Ci(x, P

J
i ) is a convex function ofP J

i . Since the objective
function in (4a) is a nonnegative weighted sum of convex
functions, it is also convex [18]. Therefore, together withthe
linear constraints in (4b) and (4c), the problem in (4) becomes
a convex optimization problem.Hence,the KKT conditions
present necessary and sufficient conditions for optimality. We
first obtain the Lagrangian function for (4) as follows:

L(P J , γ,ν) =

K∑

i=1

λi Ci

(
P̃T
i

λi

, P J
i

)
+ γ

(
K∑

i=1

P J
i − P J

tot

)

−
K∑

i=1

νiP
J
i (7)

whereP J = [P J
1 · · ·P J

K ]T, andγ andν = [ν1 · · · νK ]T denote
the KKT multipliers related to the constraints in (4b) and
(4c), respectively. Among the KKT conditions, the stationarity
condition is employed first by setting the partial derivatives of
(7) with respect toP J

i to zero. Based on the expressions in
(1) and (7), the stationarity condition leads to the following
equalities after some manipulation:

λiBi

∣∣hJ
i

∣∣2∣∣hT
i

∣∣2P̃T
i /(λi ln(2))

(
NiBi +

∣∣hJ
i

∣∣2P J
i

)2
+ 1

λi

(
NiBi +

∣∣hJ
i

∣∣2P J
i

)∣∣hT
i

∣∣2P̃T
i

= γ − νi

(8)
for i = 1, . . . ,K. Also, the primal feasibility condition refers
to the inequalities in (4b) and (4c), and the dual feasibility
condition implies thatνi ≥ 0 for all i ∈ {1, . . . ,K} and
γ ≥ 0. In addition, the complementary slackness condition
can be stated as

γ

(
K∑

i=1

P J
i − P J

tot

)
= 0, νiP

J
i = 0, i ∈ {1, . . . ,K} (9)

Based on the KKT conditions, it is first concluded that, for
the solution of (4) represented by{P̄ J

i }
K
i=1, the total power

constraint must be satisfied with equality; that is,
∑K

i=1 P̄
T
i =

P J
tot must hold. Otherwise,γ would be zero due to the first

complementary slackness condition in (9) and it would become
impossible to satisfy both the stationarity condition in (8)
and the dual feasibility condition ofνi ≥ 0 simultaneously.
Next, from the second complementary slackness condition in
(9), it is concluded that for all positive power levels, i.e.,
P J
i > 0, the correspondingνi’s must be zero. Then, the

expressions on the left-hand-side of (8) must be equal for all
positive power levels,P J

i . By settingνi = 0, (8) becomes a
second-order polynomial in terms ofP J

i , which can be stated
as
(
NiBi +

∣∣hJ
i

∣∣2P J
i

)2
+
(
NiBi +

∣∣hJ
i

∣∣2P J
i

)∣∣hT
i

∣∣2P̃T
i /λi −

λiBi

∣∣hJ
i

∣∣2∣∣hT
i

∣∣2P̃T
i /(γ λi ln(2)) = 0. It can be shown that one

root of this second-order polynomial is always negative, hence,
not a valid solution due to the primal feasibility condition,
and the other root is given by the first expression inside the
maximum operator in (5). If the latter root is positive for a
given channel indexi, it is the solution of the optimization
problem for that channel. Otherwise, the power level must
be zero for that channel to satisfy the stationary conditionin
(8) with νi > 0 (see (9)). Overall, the optimal power levels
corresponding to the solution of (4) can be expressed as the
maximum of zero and the specified root of the polynomial, as
stated in (5). To calculate the KKT multiplierγ in (5), the full
power utilization property can be used, as stated in (6).�

Proposition 2 characterizes the problem in (4) as a convex
optimization problem and specifies the optimal jamming strat-
egy for a given channel switching strategy via (5) and (6).

C. Channel Switching Game and Nash Equilibrium

Due to the conflicting aims of the transmitter and the
jammer, a game theoretic formulation is well suited for the
considered problem. LetG = 〈N , (Si)i∈N , (ui)i∈N 〉 denote
the channel switching game between the transmitter (i.e.,
playerT ) and the jammer (i.e., playerJ) in the presence of
complete information [19], whereN = {T, J} is the index
set for the players,Si is the strategy set for playeri, andui is
the utility function of playeri. For the transmitter, the strategy
setST is defined as

ST ,
{
λ, P̃ T ∈ R

K | 1T
P̃

T≤ PT
av ∧ 0 ≤ e

T
i P̃

T≤ PT
pk

(
e

T
iλ
)
,

∀i ∈ {1, . . . ,K} ∧ e
T
iλ ≥ 0, ∀i ∈ {1, . . . ,K} ∧ 1

T
λ = 1}

(10)

whereλ = [λ1 · · ·λK ]
T, P̃ T =

[
P̃T
1 · · · P̃T

K

]T
, 1 is the vector

of ones,ei is the unit vector with itsith element being one
and others being zero,K is the dimension ofλ andP̃ T , and
PT
av andPT

pk are as in (3). Similarly, the strategy setSJ for
the jammer node is defined as

SJ ,
{
P

J ∈ R
K | 1T

P
J≤ P J

tot ∧ e
T
iP

J≥ 0, ∀i ∈ {1, . . . ,K}}
(11)

whereP J =
[
P J
1 · · · P J

K

]T
andP J

tot are as in (4).
Let

{
λ , P̃ T

}
and P

J denote the strategies of playerT
and playerJ , respectively. Then, a strategy (action) profile
of the game can be denoted by

({
λ , P̃ T

}
,P J

)
∈ S, where{

λ , P̃ T
}
∈ ST , P J ∈ SJ , andS = ST × SJ . For a given

action profile, the utility functions of playerT and playerJ
are defined as

uT

(
λ, P̃ T ,P J

)
=

K∑

i=1

λi Ci

(
P̃T
i

λi

, P J
i

)
= −uJ

(
λ, P̃ T ,P J

)

(12)
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As uT

(
λ, P̃ T ,P J

)
and uJ

(
λ, P̃ T ,P J

)
satisfy

uT

(
λ, P̃ T ,P J

)
+ uJ

(
λ, P̃ T ,P J

)
= 0, ∀

{
λ , P̃ T

}
∈ ST

and ∀P J ∈ SJ , it is concluded that the channel switching
game between playerT and player J corresponds to a
two-player zero-sum game [19].

The Nash equilibrium is one of the solution approaches
that is commonly used for game theoretic problems [19].
In the game-theoretic notation, a strategy profile of game
G, denoted by

(
{λ⋆, P̃

T

⋆
},P J

⋆

)
, is a Nash equilibrium if

uT

(
λ⋆, P̃

T

⋆
,P J

⋆

)
≥ uT

(
λ, P̃ T ,P J

⋆

)
, ∀{λ , P̃ T } ∈ ST and

uJ

(
λ⋆, P̃

T

⋆
,P J

⋆

)
≥ uJ

(
λ⋆, P̃

T

⋆
,P J

)
, ∀P J ∈ SJ . That is,

at a Nash equilibrium, no player can improve its utility by
changing its strategy unilaterally. Such an equilibrium does
not necessarily exist in infinite games. However, the channel
switching gameG admits a pure-strategy Nash equilibrium as
stated in the following proposition.

Proposition 3: A pure-strategy Nash equilibrium exists in
the channel switching gameG.

Proof: The channel switching gameG in the strategic
form 〈N , (Si)i∈N , (ui)i∈N 〉 admits at least one pure-strategy
Nash equilibrium if the following conditions hold [19]:(i)
Strategy setSi is compact and convex for alli ∈ N , where
N = {T, J}. (ii) ui

(
λ, P̃ T ,P J

)
is a continuous function

in the profile of strategies
(
{λ, P̃ T },P J

)
∈ S for all

i ∈ N . (iii) uT (λ, P̃
T ,P J ) anduJ

(
λ, P̃ T ,P J

)
are quasi-

concave functions in{λ, P̃ T } and P
J , respectively. Since

set ST in (10) and setSJ in (11) are closed and bounded,
it can be shown that these sets are compact. Also, the sets
in (10) and (11) are convex, as discussed in the proofs of
Propositions 1 and 2. Hence, the first condition is satisfied.
In addition,uT (λ, P̃

T ,P J ) anduJ

(
λ, P̃ T ,P J

)
in (12) are

continuous functions, for which the second condition holds.
Regarding the third condition, it is proved in Proposition 1that
uT (λ, P̃

T ,P J ) is a concave function of{λ, P̃ T }, and it is
deduced from the proof of Proposition 2 thatuJ

(
λ, P̃ T ,P J

)

is a concave function ofP J . Consequently,uT (λ, P̃
T ,P J )

anduJ

(
λ, P̃ T ,P J

)
are quasi-concave functions in{λ, P̃ T }

and P
J , respectively, as specified in the third condition.

Overall, it is concluded that at least one pure-strategy Nash
equilibrium exists in the channel switching gameG. �

For analyzing the Nash equilibrium, the best response
functions of playerT and playerJ should be specified.
For a given strategy of playerJ , denoted byP J , the best
response function of playerT can be stated as

{
λBR, P̃

T

BR

}
=

BRT

(
P

J
)

, argmax{λ ,P̃T }∈ST

∑K

i=1 λi Ci

(
P̃T
i /λi , P

J
i

)
.

Similarly, for a given strategy of playerT , the best response
function of playerJ is expressed asP J

BR = BRJ

(
λ , P̃ T

)
,

argmax
P

J∈SJ
−
∑K

i=1 λi Ci

(
P̃T
i /λi , P

J
i

)
. Considering the

best response functions together, the following function is de-
fined: BR(θ) = (BRT ,BRJ ) fromS to S, whereS = ST×SJ

andθ ,
(
λ , P̃ T ,P J

)
. For the Nash equilibrium, denoted by

θ⋆ ,
(
λ⋆ , P̃

T

⋆
,P J

⋆

)
, the following fixed point equation holds

[19]: θ⋆ = BR(θ⋆). Since the utility functions in (12) are con-
cave functions of

{
λ, P̃ T

}
andP J , respectively, the channel

switching game between playerT and playerJ becomes a
convex-concave game [18], [20].1 In such a game, the Nash
equilibrium becomes the saddle-point equilibrium; hence,the

1In convex-concave games, if there exist multiple Nash equilibria, the value
of the game is the same (unique) for each Nash equilibrium.

pure-strategy Nash equilibrium,θ⋆ =
(
λ⋆ , P̃

T

⋆
,P J

⋆

)
, of the

gameG satisfies the following relation [16], [20]:

uT

(
λ⋆, P̃

T

⋆
,P J

⋆

)
= −uJ

(
λ⋆, P̃

T

⋆
,P J

⋆

)

= max
{λ ,P̃T }∈ST

min
P

J∈SJ

K∑

i=1

λi Ci

(
P̃T
i /λi , P

J
i

)
(13)

From (13), a pure-strategy Nash equilibrium of the channel
switching gameG can be obtained. Based on the convexity
result in Proposition 1, the maximization problem in (13) can
be solved via convex optimization tools by calculating the
solution of the minimization problem in (13) via the result in
Proposition 2. Also, each Nash equilibrium obtained from (13)
is Pareto optimal as in all two-player zero-sum games [19].2

Remark 2: The results in this section can be applied
to a secondary user in a cognitive radio system with the
overlay approach [3]. For the underlay approach, a secondary
user is affected from interference due to primary users. If
that interference is modeled by a Gaussian noise process
[7], then the results can still be applied by extending the
capacity formula in (1) as Ci(P

T , P J) = Bi log2
(
1 +∣∣hT

i

∣∣2PT /
(∣∣hJ

i

∣∣2P J + 2Bi(0.5Ni + Ii)
))

bps, where Ii de-
notes the spectral density level of the interference in channel i.

Remark 3: The channels between the transmitter and the
receiver can be determined based on pilot based channel
estimation approaches, and the jammer can learn the channel
coefficients by listening to signal exchanges between the
transmitter and the receiver and by performing estimations
based on the knowledge of geographical locations [21].

IV. N UMERICAL RESULTS AND CONCLUSIONS

In this section, we provide numerical examples to
illustrate the theoretical results in Section III by deriving
Nash equilibria in various scenarios. We considerK = 4
channels with the following parameters:N1 = 10−12 W/Hz,
N2 = 2 × 10−12 W/Hz, N3 = 5 × 10−12 W/Hz,
N4 = 10−11 W/Hz, andB1 = B2 = B3 = B4 = 1MHz.
Also, considering Rayleigh fading channels between the
transmitter and the receiver and between the jammer and
the receiver, we model|hT

i |
2 and |hJ

i |
2 as i.i.d. exponential

random variables with a mean parameter of10−4 and
generate them in MATLAB with seed1, which results
in
(
|hT

1 |
2,|hT

2 |
2, |hT

3 |
2, |hT

4 |
2
)

=
(
0.87462, 0.32805, 9.0760,

1.1962
)
×10−4 and

(
|hJ

1 |
2, |hJ

2 |
2,|hJ

3 |
2, |hJ

4 |
2
)
=
(
1.919, 2.3823,

1.6806, 1.0626
)
×10−4. In addition, the peak power constraint

in (2c) is given byPT
pk = 200W. In the simulations, Nash

equilibria are obtained for the channel switching game
between the transmitter and the jammer, and the resulting
capacity values (see (12)) are calculated.

In Fig. 1, the capacities achieved at Nash equilibria of the
channel switching game are plotted versusPT

av andP J
tot by

considering three different total jammer powers and average
transmit powers, respectively. As expected, lower capacities
are achieved when the total jammer power is higher, and the
capacity increases withPT

av. It is also noted that while the
jammer noise significantly affects the capacity at low values
of PT

av, it becomes less significant at high average transmit
powers. Moreover, at low total jammer powers, the capacities

2If the game between the transmitter and the jammer is modeledas a
Stackelberg game in which the transmitter is the leader and moves first and
the jammer is the follower and moves after the transmitter, it can be solved
via backward induction by utilizing the result in Proposition 2.



5

10-4 10-3 10-2 10-1 100 101 102

P
av
T  (W)

102

104

106
C

ap
ac

ity
 (

bp
s)

P
tot
J =10-3 W

P
tot
J =10-1 W

P
tot
J =10 W

10-4 10-3 10-2 10-1 100 101 102 103

P
tot
J  (W)

102

104

106

C
ap

ac
ity

 (
bp

s)

P
av
T =10-3 W

P
av
T =10-1 W

P
av
T =10 W

Fig. 1. Capacity versusPT
av (P J

tot) for Nash equilibria of the channel
switching game with various total jammer powers (average transmit powers).

are almost constant since each jammer noise component is
insignificant compared to the corresponding channel noise
term (the second term in the denominator in (1)) in that region.

To investigate the strategies of the transmitter and the
jammer at Nash equilibria, Table I is presented, where
(λ⋆, P̃

T

⋆
,P J

⋆

)
specify the Nash equilibrium in a given setting

as in (13). It is observed that when the total jammer power is
low; i.e., whenP J

tot = 10−3 W, the jammer allocates all of its
power to channel 3 (i.e., to the best channel in the absence of
jamming) and the transmitter employs channel3 exclusively
since it is still the best one in the presence of jamming.
(This single-channel solution is the Nash equilibrium for all
P J
tot ≤ 0.031995 W.) When the total jammer power increases

to P J
tot = 10−1 W, the jammer distributes its power among

the best two channels such that they become identical due
to jammer noise (and the other two channels remain worse).
In response to this strategy, when the transmitter employs
these two channels with specific time-sharing factors at the
average power limit of0.1W, a Nash equilibrium is formed
as specified in Table I. A similar scenario is also observed for
P J
tot = 10 W, where all the channels are utilized.WhenP J

tot
is sufficiently high, the max-min problem in (13) leads to an
equalizer solution that is achieved by using all the channels;
hence, there exist no Nash equilibria without employing all
the channels.

As a benchmark, the transmitter and the jammer can ran-
domly and independently select which channel to use among
the four channels and employ them at the available power
limits. Then, the resulting capacities become5.8286 × 105,
5.1794 × 105, and 4.4071 × 105 bps for P J

tot = 10−3 W,
P J
tot = 10−1 W, and P J

tot = 10 W, respectively, where
PT
av = 10−1 W. Compared to the capacity values in Table I,

the random channel switching leads to lower (higher) capac-
ities when the total jammer power is low (high) since it is
not an optimal approach for neither the transmitter nor the
jammer, and this non-optimality becomes more crucial for the
transmitter (jammer) whenP J

tot is low (high) compared toPT
av.

TABLE I
STRATEGIES OF TRANSMITTER AND JAMMER ATNASH EQUILIBRIA .

P
T
av = 10

−1 W, P J
tot = 10

−3 W
P J

⋆ (W) 0 0 10−3 0

λ⋆ 0 0 1 0

P̃
T
⋆ (W) 0 0 10

−1
0

Capacity 4.2143 × 106 bps

P
T
av = 10

−1 W, P J
tot = 10

−1 W
P J

⋆ (W) 0.0052926 0 0.094707 0

λ⋆ 0.077827 0 0.92217 0

P̃
T
⋆ (W) 0.0077827 0 0.092217 0

Capacity 2.4166 × 106 bps

P
T
av = 10

−1 W, P J
tot = 10 W

P J
⋆ (W) 0.64374 0.18768 7.6597 1.5088

λ⋆ 0.064016 0.019341 0.75852 0.15812

P̃T
⋆ (W) 0.0064016 0.0019341 0.075852 0.015812

Capacity 9.7923 × 104 bps
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