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Abstract: Unmanned aerial vehicles are gaining importance with many civilian and military applications. Especially the3

surveillance, search/rescue and military operations may have to be carried out in extremely constrained environments.4

In such scenarios, drone base stations (DBSs) have to provide communication services to the people at the ground.5

The ground users may have no access to the global positioning system (GPS), therefore their locations have to be6

estimated using alternative techniques. Besides there may be threats in the environments, such as shooters. In this7

work, we address the problem of optimal DBS deployment under aforementioned constraints. We propose a novel DBS8

deployment algorithm that uses estimated positions of ground users and threats. The proposed algorithm is based9

on receiver signal strength (RSS) based maximum likelihood (ML) estimate of user locations and K-means clustering10

supported heuristic that takes into account the positions of threats. Numerical results show that proposed algorithm11

performs close to the computation intensive near-optimal algorithm and strikes a good trade-off between the number of12

unserved users and the probability of DBSs not being hit.13

Key words: Drone base stations, tactical networks, metaheuristic, urban warfare14

1. Introduction15

The world’s population is becoming more and more urbanized each year. As stated in the United Nation’s16

report, 30% of world’s population was urban in 1930 and it is projected that 66% of world’s population will17

be urbanized by 2050 [1]. The urbanization process brings some potential threats to the peace of society. The18

demand for limited resources such as water, energy and food creates pressure to the system. This may result in19

the increase of unrest and violence in society and require military interventions in order to provide stability in20

densely populated regions. However, current military doctrines do not sufficiently recognize the challenges of21

conducting operations in urban environments [2]. Considering the necessity of urban warfare in future conflicts,22

NATO examines the impact of urban operations on the military and seeks to identify possible gaps in training,23

requirements and capabilities.24

There are key factors, which make the operation in urban battlefield challenging. Intelligence collection25

is difficult and most of the time human intelligence [3] is needed regarding the activities of adversaries. The26

presence of civilians in the operation area necessitates precision fire to prevent loss of civilian life. As the27

urban operations are ground-intensive, maneuver warfare tactics are very difficult to apply. Last but not least28

challenge is the provisioning of a reliable communication network for allied forces [3, 4].29

Establishing and maintaining a wireless battlefield communication network is a challenging task. Ter-30

restrial communication suffers from non-line-of-sight (NLoS) and deployment of relays or base stations poses31
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difficulties, along with the security risks. In addition to this, mobility of friendly forces on the battlefield con-1

tinuously affects the network coverage performance, hence the repositioning of communication equipments is2

required. However, as the ground intensive urban combat restricts the area for deployment, the equipments may3

not be placed at the appropriate locations [3]. Furthermore, the selection of the suitable position requires the4

location information of the soldiers. However, the presence of widely available and inexpensive global position-5

ing system (GPS) jammers may prevent the sharing of position information. In order to mitigate the effects of6

GPS jamming, researchers focus on the development of anti-jamming GPS system equipped with antenna arrays7

and advanced signal processing algorithms such as beamforming and spatial filtering [5]. However, design of an8

anti-jamming GPS device that meets strict size, weight,power and cost (SWaP-C) requirements and equipping9

all soldiers deployed in the field with these devices are challenging tasks to accomplish.10

Drone base station (DBS) based communication and soldier position estimation offers inherent solutions to11

the aforementioned problems. First, high altitude DBS deployment reduces the probability of NLoS transmission12

and line-of-sight (LoS) condition dominates the channel between the DBS and the user [6]. Second, GPS of a13

drone is more robust to GPS jamming applied from the ground as the antenna has an unobstructed view of the14

sky, which ensures good signal reception and provides, to some extent, spatial filtering of jamming signals [5].15

Hence, with the help of localization techniques and usage of drones as reference points estimating the locations16

of soldiers becomes possible [7]. In particular, received signal strength (RSS) based localization, which does not17

require hardware modification of drone is an attractive method for this application. Final advantage of the DBS18

use is related to the handling of soldiers’ mobility. DBS is able to fly to the new position in order to maximize19

coverage when the soldiers move from one location to another.20

As there are threats to soldiers in the ground, there are threats to DBSs in the air as well. The authors21

in [3, 8] report that the urban warfare is primarily conducted with small arms such as sniper rifles or machine22

guns. In this respect, we identify that small arm equipped enemy who is trained to shoot down DBS, which23

we call drone shooter thereafter, pose a significant risk in maintaining DBS-based communication service in the24

urban warfare. Therefore, DBS placement decision should be made considering the coverage and drone safety25

requirements with respect to an operation undertaken. This phenomenon complicates the already difficult26

problem of DBSs deployment [9].27

In this work, we examine the scenario of urban warfare and its challenges from the perspective of wireless28

communication networks. We propose a novel DBS deployment algorithm, which employs both low-cost RSS-29

based technique to estimate soldier positions in the urban environment and utilize k-means clustering supported30

heuristic algorithm which takes into account the presence of drone shooters. We consider air-to-ground Gaussian31

mixture path loss model [6] and derive the maximum likelihood (ML) estimation of the angles between DBSs and32

soldiers, that enables position estimates of soldiers. For the same scenario, we investigate a near-optimal upper33

bound for coverage using a computationally intensive particle swarm optimization (PSO) method. Finally, the34

discussion is provided regarding the deployment decision under two conflicting objectives, namely, minimum35

number of soldiers unserved and maximum probability of DBSs not being hit. To the best of our knowledge,36

this is the first article which investigates the DBSs placement problem considering the requirements of urban37

warfare.38

Recently, DBS deployment has attracted many researchers. There are diverse use cases for the utilization39

of DBSs and it is considered as an important component in beyond-5G networks [10]. In our previous work, we40

studied fairness-aware multiple DBSs deployment and analyzed the use of the efficient clustering algorithms for41

determining the positions of a number of DBSs in a 3-dimensional (3D) space in order to achieve maximum log-42
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sum data rate. The work in [11] derives the optimal deployment altitude of a single DBS to maximize coverage1

with minimum transmit power. In [12], the backhaul capacity-aware 3D placement of a DBS is considered. The2

authors propose two placement approaches, one maximizes user coverage and the other maximizes the total3

user data rate. [13] studies the placement of a single DBS to maximize network revenue that is defined as the4

number of users covered. The authors in [14] employ PSO technique to find the number of DBSs required and5

their positions to minimize the number of uncovered users. In [15], a polynomial time algorithm aiming to6

minimize number of DBSs needed to cover users is proposed. Here, the problem formulation does not consider7

interference amongst DBSs. The DBSs deployment based on circle packing theory is studied in [16] and [17]. In8

the former work, the positions of DBSs are determined to maximize total coverage with minimum transmission9

power and in the latter, DBSs are placed to maximizes the number of covered users with different quality of10

service requirements. In [18], clustering algorithms are used to position the unmanned aerial vehicle (UAV)11

mounted picocells in a two-tier network. There is also some discussion regarding the effect of user positioning12

error on the received signal strength for users serviced by the UAV picocells. However, the presence of NLoS13

link and interference amongst base stations are ignored. In addition, the assumed user positioning errors are14

not sufficient to investigate network performance in the GPS denied urban environments.15

RSS-based positioning technique is very attractive for DBS-based soldier positioning application because16

it provides a low cost and easy-to-implement solution. RSS-based positioning does not require antenna arrays17

employed in angle based localization technique [19]. Furthermore, it does not require precise time synchro-18

nization that is needed in time-based localization approaches [20]. The use of drones for positioning is studied19

in [21] and [22]. The author in [21] considers a single flying drone equipped with GPS and particle filtering20

algorithm to design RSS-based positioning. In [7], drone based positioning using RSS samples is studied for21

urban environment. The authors derive Cramer-Rao lower bound for the estimated distance as a function of22

the elevation angle and the drone to node distance. However, more realistic Gaussian mixture channel model is23

not considered and formulation of ML estimator is not provided.24

The rest of the paper is organized as follows. In Section 2, we present the system model. In Section 3, the25

DBSs deployment algorithm which considers the requirements of urban warfare is presented. In Section 4, we26

present numerical simulations and discuss the trade-offs and performance. Finally, in Section 5 we summarize27

our work and discuss the future work.28

2. System model and assumptions29

We focus on a downlink transmission system, where DBSs provide service to the soldiers in urban terrain as30

shown in Figure 1. Using the definitions given in [23], we identify that there are two major zones in urban31

battlefield, theater of operation (TOO) and theater of war (TOW). In our work, friendly force soldiers are32

distributed in the TOO according to the structured group mobility model (SGMM) which is used for modelling33

task oriented node positioning [24, 25]. Drone shooters are distributed uniformly in the TOW. However, to be34

more realistic it is assumed that each soldier has a protected zone around himself, where drone shooters are not35

positioned. The users and drone shooters are assumed to be stationary and the deployment problem is solved36

for this fixed topology.37

Due to GPS jamming, we consider that soldiers have no access to GPS service, whereas DBSs utilize GPS38

service to locate themselves. We consider both friendly forces and drone shooters are positioned on ground,39

not on rooftops or in buildings. Deploying drone shooters on the rooftops are not feasible as they can be40

easily detected by surveillance drones and become an open target. On the other hand, buildings may limit41
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Figure 1. System model

the shooter’s mobility and field of view. DBSs are assumed to be located at a fixed altitude and have same1

transmission power. We also assume that a separate frequency band is allocated for the communication among2

DBSs and enough capacity is provided.3

DBS deployment consists of two phases. In the first phase, DBSs fly to the fixed points assigned to each4

of them to form an equilateral triangle on the TOO. At the corners of triangle, DBSs collect short pilot signals5

emitted from the radios of soldiers. We assume that all pilot signals reach to DBSs. In the second phase,6

the RSS of pilot signals are used to estimate soldier positions and deployment algorithm determines the final7

positions of DBSs. It is assumed that soldiers are stationary and each soldier is served by a single DBS. We8

consider Time Division Multiple Access (TDMA) for multiple access. In this scheme, each DBS assigns equal9

fraction of time slots to each soldier. We consider that each user is connected to DBS achieving largest Signal10

to Noise Ratio (SNR).11

The positions of drone shooters are assumed to be obtained via Human Intelligence (HUMINT) network12

[26] or by soldiers who are trained to visually estimate target locations [27] and report to DBSs. Because13

soldiers report the positions relative to their locations, the same error margin is applied to real positions of14

drone shooters. The probability of DBSs not being hit is calculated when they reach their final operational15

positions for providing service to soldiers.16

We denote soldiers, DBSs and drone shooters by the sets U = {1, ..., U} , D = {1, ..., D} and T =17

{1, ..., T} , respectively. The position of the ith soldier, (xui , y
u
i ) and l th drone shooter, (xtl , y

t
l ), are estimated18

and denoted by (x̂ui , ŷ
u
i ) and (x̂tl , ŷ

t
l ), respectively, where i ∈ U and l ∈ T . We denote the 3D position of the19

j th DBS by (xdj , y
d
j , h

d
j ) where j ∈ D .20

2.1. Path loss model21

We adopt the Gaussian mixture path loss model proposed in [6], whose simplified version is widely used by22

the researchers for the analysis of DBS placement problems [12–14]. It is important to note that we apply23

4



AUTHOR and AUTHOR/Turk J Elec Eng & Comp Sci

a realistic excess path loss model, which is dependent on the operating frequency, environment and elevation1

angle between the DBS and the soldier. The path loss between the ith soldier and j th DBS in the LoS and2

NLoS cases are formulated as,3

PLijLoS(θij) = 10γ log

(
4πdij(θij)fc

c

)
+ ηLoS(θij), (1)

4

PLijNLoS(θij) = 10γ log

(
4πdij(θij)fc

c

)
+ ηNLoS(θij), (2)

where γ is the path loss exponent, fc is the operating frequency, c is the speed of light, dij(θij) =
hj

sin(θij)5

and θij = arctan
hj

rij
are the distance and elevation angle between the soldier i and DBS j , respectively where6

hj is the altitude of the j th DBS and rij equal to
√

(xdj − xui )2 + (ydj − yui )2 is the horizontal distance between7

ith soldier and the j th DBS. ηLoS(θij) and ηNLoS(θij) are the excess path loss components (in dB) of the LoS8

and NLoS links, respectively.9

In [6], the excess path loss samples, which are obtained by a ray tracing simulation, are organized in10

terms of the elevation angle. For simplicity, the authors propose to use Gaussian distribution for ηLoS(θij) and11

ηLoS(θij) as follows,12

ηLoS(θij) ∼ N (µLoS , σ
2
LoS(θij)), (3)

ηNLoS(θij) ∼ N (µNLoS , σ
2
NLoS(θij)), (4)

where µLoS and µNLoS are the mean excessive losses and σLoS and σNLoS are the standard deviations of the13

LoS and NLoS links, respectively. The elevation angle dependent standard deviations of the LoS and NLoS14

links are formulated as,15

σLoS(θij) = α1 exp(−β1θij), (5)

16

σNLoS(θij) = α2 exp(−β2θij), (6)

where pairs (α1, β1) and (α2, β2) are frequency and environment dependent parameters for the LoS and NLoS17

links, respectively.18

The authors in [28] derive a closed form expression for the probability of LoS,19

pijLoS(θij) =
1

1 + a exp(−b(θij − a))
, (7)

where a and b are environment dependent constants, pijLoS is the probability of LoS between ith soldier and20

j th DBS. The probability of NLoS for the same pair, pijNLoS , is calculated as 1− pijLoS(θij).21

Finally, the elevation angle-dependent mean path loss is formulated as:22

PLij(θij) = PLijLoS(θij)p
ij
LoS(θij) + PLijNLoS(θij)(1− pijLoS(θij)). (8)
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2.2. Modeling soldier distribution1

In the urban warfare, small teams are assigned to operations at the tactical level. They operate and move in2

groups to accomplish a given task [29]. The SGMM is used to model node positioning which helps researchers3

to analyze military networks in a more realistic way [24, 25]. In our work, we consider a snapshot of a network4

where a number of soldier groups are distributed in the TOO, which is a cell with radius rTOO . In this model,5

first group leaders are distributed uniformly in the TOO. Then, soldiers are positioned in reference to their6

group leaders. Figure 2 shows the placement of the ith soldier with respect to the group leader k . The7

distance, dki , and angle, aki , between the soldier i and group leader k are selected from a Gaussian and uniform8

distribution, respectively. In our previous work, we investigated the performance of networks where users are9

uniformly and non-uniformly distributed [9]. In case of non-uniform user distribution, the interference becomes10

more challenging to handle when user groups are in close proximity.11

3. DBS deployment in urban warfare12

The specific requirements of urban warfare significantly affect the DBSs deployment process. In this regard, we13

first derive the problem of ML estimation of soldier locations based on the RSSs. In addition, we introduce the14

small arm weapon model and derive the probability of DBSs not being hit anticipating the behavior of a drone15

shooter. Then, we present our novel deployment algorithm specifically designed for the challenges of urban16

warfare. In order to understand the coverage performance of our algorithm, we investigate the near-optimal17

deployment of DBSs by proposing 4 different optimization objectives.18

3.1. Estimation of soldier locations19

Here, we assume that the path loss to each drone is independent. As the drones are significantly apart,20

this is a reasonable assumption. The distribution of path loss is a mixture of two Gaussians (for LoS and21

NLoS) which is presented in [6]. The probability density function of the ith soldier’s path loss vector,22

PLi = [PLi1, PLi1, ..., PLiD] , given the location of the soldier by the elevation angles, θi = [θi1, θi1, ..., θiD] ,23

Figure 2. Placement of the ith soldier in reference to the k th group leader
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are as follows:1

f(PLi; θi) =

D∏
j=1

(
pijLoS(θij)√
2πσ2

LoS(θij)
exp

(
−

(PLij − E[PLijLoS ])2

2σ2
LoS(θij)

)
+

pijNLoS(θij)√
2πσ2

NLoS(θij)
exp

(
−

(PLij − E[PLijNLoS ])2

2σ2
NLoS(θij)

))
(9)

where E[PLijLoS ] and E[PLijNLoS ] are mean LoS and NLoS path losses respectively.2

The log-likelihood function is3

L(θi) =

D∑
j=1

log

(
pijLoS(θij)√
2πσ2

LoS(θij)
exp

(
−

(PLij − E[PLijLoS ])2

2σ2
LoS(θij)

)
+

pijNLoS(θij)√
2πσ2

NLoS(θij)
exp

(
−

(PLij − E[PLijNLoS ])2

2σ2
NLoS(θij)

))
(10)

Upon maximizing the log-likelihood function, we find the elevation angles of soldier i .4

θ̂i = arg maxL(θi). (11)

Then, the estimated location of soldier i is found by solving the multilateration problem:5

(x̂ui , ŷ
u
i ) = arg min

xu
i ,y

u
i

D∑
j=1

(√
(xdj − xui )2 + (ydj − yui )2 − r̂ij

)2

,∀i ∈ U (12)

where r̂ij is the estimated distance between the ith user and j th DBS and computed using the estimated6

elevation angle obtained from Equation 11 as7

r̂ij =
hj

tan θ̂ij
. (13)

3.2. Drone shooter model and probability of DBSs not being hit8

The presence of drone shooters is one of the most challenging issues for sustaining communication service in9

urban warfare. Furthermore, as DBSs are shot down, the OPEX (Operational Expenditure) increases and10

logistic problems arise. From the communication perspective, shooting down of a single DBS significantly11

change the state of network and reconfiguration is needed to compensate for the service loss [30]. Therefore, it12

is critical to consider the security of all DBSs while determining their positions. Our proposed algorithm that13

we elaborate in the subsequent section takes into account the probability of DBSs not being hit as a security14

metric to decide the positions.15

While calculating the probability of DBSs not being hit, we consider each drone shooter tries to hit the16

nearest DBS. The probability of drone shooter seeing the nearest DBS unobstructed is calculated from (7).17

The probability of DBSs not being hit is calculated as pnoHit =
∏D
j=1(1 − pjhit), where pjhit is the probability18

of j th DBS being hit that is expressed as pjhit = 1 −
∏
k∈Tj (1 − phit(djk)pjkLoS), where Tj is the set of drone19

shooters nearest to DBS j , phit(djk) is the probability of DBS j being hit by drone shooter k , (k ∈ T ), djk is20

the distance between the DBS j and drone shooter k , pjkLoS is the probability of LoS between the DBS j and21

drone shooter k . We assume that drone shooters are equipped with sniper rifles. The work in [31] presents the22

7
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historical probability of hit values of this weapon at certain distances for stationary man-sized targets. We fit1

the data to the explicit mathematical formula as follows:2

phit(d) =

{
100−5 exp(0.0028×d)

100 , if d < 985m
210.58 exp(−0.0023×d)

100 , otherwise.
(14)

3.3. DBS deployment based on threat aware user clustering3

Here, we describe our proposed DBS deployment algorithm that sequentially executes ML estimator for soldiers’4

locations, k-means clustering and a heuristic which increases pnoHit and at the same time avoid a major5

degradation in the ratio of unserved soldiers, Nu . Figure 3 shows the general architecture of the proposed6

algorithm, which we call as Threat Aware Clustering with Estimated Positions (TACEP) thereafter. The7

algorithm consists of three phases. In the first phase, for each soldier, RSSs are collected and path losses8

between DBSs and soldier are calculated. Then, ML estimation for finding elevation angles θ̂ij , ∀i ∈ U ,∀j ∈ D9

and multilateration for estimating user positions ŵu
i = [x̂ui , ŷ

u
i ] , ∀i ∈ U are applied respectively. Then the10

estimated soldier positions are clustered to find the positions of DBSs wc
j = [xcj , y

c
j ] , ∀j ∈ D . The minimum11

sum-of-squares clustering problem is defined as follows:12

min
wc,A

∑
i∈U

∑
j∈D

Aij‖ŵu
i −wc

j ‖2

subject to∑
j∈D

Aij = 1, ∀i ∈ U

Aij ∈ {0, 1}, ∀i ∈ U,∀j ∈ D

(15)

where wc is the positions of DBSs, Aij is a binary variable and equals to 1 if ith user is associated with13

j th DBS. We adopt Lloyd’s algorithm to solve this clustering problem. The algorithm first randomly assigns14

Figure 3. Algorithm architecture of TACEP
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positions to the DBSs. Then, each soldier connects to the nearest DBS and the soldier groups S1, ..,SD are1

formed. The position of each DBS is found by calculating the mean of soldiers’ positions connected to the2

DBS. The position update continues until there is no major change in the positions of DBSs. In the final step,3

our proposed iterative threat-aware heuristic approach is applied to find final positions of DBSs wd
j = [xdj , y

d
j ] ,4

∀j ∈ D . In this approach, first the most vulnerable DBS (the one with the highest hit probability) is found5

and then its new location is calculated by moving DBS by a fixed distance, d∆
h , away from the closest shooter.6

Next, if new pnoHit is larger than the previous one, the position of DBS is updated. This process continues until7

new pnoHit is not larger than the previous one. The maximum distance between the original (before applying8

heuristic) and new DBS position, dmaxh , is predetermined. If dmaxh is reached for a DBS and it is still the most9

vulnerable one, algorithm considers the second most vulnerable DBS to move.10

3.4. Minimum number of unserved soldiers11

The challenging nature of urban channel makes the problem of DBS deployment very hard. Randomly changing12

angle-dependent excess losses prevent convergence to an optimal solution for minimizing the number of soldiers13

unserved. However, there are methods which statistically provide better solutions than the others. In our14

investigation, we define 4 different objective functions to achieve a near-optimal solution for minimizing the15

number of unserved soldiers in the GPS-enabled environment. For each case, the positions of DBSs are obtained16

by maximizing the objective function and then the number of unserved soldiers, denoted as Nu , is determined.17

We adopt PSO algorithm for solving the problems and limit the number of iterations. Our motivation to limit18

the number of iterations is to consider a practical case where the computing resources are restricted as it is in19

the battlefield.20

We assume soldier-DBS association is performed on the basis of received signal power. Let αi be the21

DBS selected by the ith soldier.22

αi = arg max
j
Rij(x

d
j , y

d
j , h

d
j ), (16)

where Rij(x
d
j , y

d
j , h

d
j ) is the received signal power from the j th DBS at the ith soldier terminal and is calculated23

as:24

Rij(x
d
j , y

d
j , h

d
j ) = 10

PT +Gij−PLij
10 , (17)

where PT is the transmission power (in dBm) of a DBS, Gij is the gain of the DBS antenna and is approximated25

by [32].26

As we indicate in Section 2, the capacity of a DBS is equally shared amongst the soldiers in the time27

domain. Let N j
s , be the total number of served soldiers by the j th DBS.28

N j
s =

∑
i∈U

Iji , ∀j ∈ D, (18)

where binary variable Iji defined as:29

Iji =

{
1, if αi = j and DRi(x,y,h) > RTH

0, otherwise.
(19)

where RTH is the data rate threshold, DRi(x,y,h) is the data rate of the soldier i , (x,y,h) denotes the30

9
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positions of all DBSs where x = [xd1, .., x
d
D] , y = [yd1 , .., y

d
D] , h = [hd1, .., h

d
D] . DRi(x,y,h) equals to1

W

Nαi
s

log2

1 +
Riαi

(xdαi
, ydαi

, hdαi
)

NoW +
∑
j 6=αi

Rij(xj , yj , hj)

 (20)

Hence, the number of served soldiers can be found by Ns =
∑
j∈DN

j
s and the number of unserved soldiers2

equals to Nu = N − Ns . Given the same altitude for DBSs, the following approaches are used to find the3

horizontal positions of DBSs with the help of PSO algorithm. We call the algorithms given below as LinKP,4

LogKP, CovKP, ClogKP respectively.5

3.4.1. Maximizing sum of data rates approach (LinKP)6

arg max
x,y

∑
i∈U

DRi(x,y,h)

subject to√
x2
j + y2

j ≤ rTOO ∀j ∈ D

(21)

3.4.2. Maximizing sum of log data rates approach (LogKP)7

arg max
x,y

∑
i∈U

log(DRi(x,y,h))

subject to the same constraint given in Eq. (21)

(22)

3.4.3. Maximizing number of served soldiers approach (CovKP)8

arg max
x,y

∑
i∈U

∑
j∈D

Iji

subject to the same constraint given in Eq. (21)

(23)

3.4.4. Maximizing joint coverage and sum log rate approach (CLogKP)9

In each iteration of CLogKP algorithm, the particles with the largest Ns is found and then the one with the10

largest sum log data rate capacity is selected as the global best solution. The constraint given in Eq. (21) is11

applied for the positions of DBSs.12

4. Simulation results13

In this section, we present the performance of our proposed algorithm , named TACEP, and compare its14

performance with three different benchmark algorithms. These benchmark algorithms are all threat-unaware.15

• The first benchmark algorithm is soldier location-unaware EQT which simply places the DBSs at the16

corners of an equilateral triangle over TOO.17

• Second benchmark is a K-means clustering based algorithm named KCEP. It clusters soldiers based on18

the estimated positions and places DBSs at the centers of clusters.19

10
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Table 1. Simulation Parameters

Parameter Definition Value

U Number of Soldiers 80
D Number of DBSs 3
T Number of Drone Shooters 3
fc Carrier Frequency 2GHz

rTOW Radius of TOW 1500m
rTOO Radius of TOO 1000m
rPZ Radius of PZ 50m
dmax Max. dist. 100m
W Bandwidth 20MHz
N0 Noise Power Spectral Density −170dBm/Hz
a, b Environmental Parameters 9.61, 0.16

ηLoS , ηNLoS Mean Path loss 1dB, 20dB
θB DBS Antenna Beamwidth 140◦

PT DBS Transmission Power 30dBm
RTH Data Rate Threshold 500Kbps

d∆
h , dmaxh Parameters for Heuristic 20m, 100m
NMC Monte Carlo Simulations 100

• The third benchmark algorithm is a version of CLogKP named CLogEP which we explain in this section.1

This serves as a lower bound on the Nu performance.2

We use MATLAB as a simulation platform. The simulations are run for 100 different network topologies3

where the soldiers and drone shooters are distributed according to the models given in Section 2. Then, the4

average of Nu and pnoHit results, which are denoted as Nu and pnoHit respectively, are presented. Unless5

stated otherwise the parameters used in the simulations are from Table 1.6

We will first determine a threat-unaware lower bound for the number of unserved users (Nu ) performance.7

For this purpose, we will compare the 4 different objective functions for the PSO-based optimization. In Figure8

4, Nu performance of 4 different optimization objectives are shown. Here, the results of the first approach,9

named as LinKP, show that placing DBSs to maximize the sum of data rates is inadequate for achieving the10

minimum Nu . The second approach, LogKP, maximizes the sum of log data rates and provides significantly11

better performance than that of LinKP. As the soldier coverage is the main problem, CovKP is one of the most12

promising methods to find near-optimal results. However, we find that there is a better approach than CovKP.13

As the combination of CovKP and LogKP, CLogKP achieves the best performance among all approaches. In14

this respect, we identify CLogKP and its version named as CLogEP, which uses estimated positions of soldiers15

instead of real positions, as a near-optimal lower bound for the minimum Nu . We provide the results of both16

CLogKP and CLogEP in Table 2, which shows that our proposed RSS-based ML estimator provides a good17

performance for estimating the soldier’s positions.18

Nu and pnoHit performance of TACEP and comparison algorithms are presented in Figure 5 and Figure19

6, respectively. With respect to Nu performance of the algorithms, the worst results are obtained from EQT20

as expected since it does not consider the locations of soldiers. TACEP and KCEP perform very closely to21

each other. The performance gap between TACEP and CLogEP increases as the DBSs are placed at the higher22

altitudes. The reason is that as the DBSs are deployed at the higher altitudes, the interference becomes more23

11



AUTHOR and AUTHOR/Turk J Elec Eng & Comp Sci

Table 2. Performance results for DBS altitudes 600m and 800m. The close results of CLogEP and CLogKP suggest
that our proposed position estimator works efficiently.

Algorithm Nu (600m) ρu pnoHit Nu (800m) ρu pnoHit

TACEP 1.032 0.013 0.34 3.669 0.045 0.532
KCEP 0.872 0.010 0.279 3.204 0.040 0.485
EQT 3.784 0.047 0.29 8.811 0.110 0.465

CLogEP 0.580 0.007 0.258 1.241 0.015 0.462
CLogKP 0.418 0.005 0.244 1.094 0.013 0.459
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Figure 4. Number of unserved soldiers performance for different DBS altitudes. CLogKP achieves the best performance,
hence it will be regarded as a lower bound on the Nu performance.

difficult to manage and requires more consideration. As presented in Figure 6, TACEP achieves the best pnoHit1

performance which is the primary objective of this algorithm. On the other hand, KCEP performs moderately2

well because the centers of soldier clusters are located in the relatively safe regions where shooters are present3

with low probability.4

For the altitudes of 600m and 800m, Table 2 shows the performance of the algorithms in terms of Nu ,5

pnoHit and the average ratio of the number of unserved soldiers, which is denoted as ρu and equals to Nu/N .6

Considering ρu performance at the altitude of 600m, TACEP provides more than three times better performance7

than that of EQT and the performance of KCEP and TACEP are very close to each other. The best performance8

is provided by CLogEP as expected. On the other hand, pnoHit performance of TACEP considerably exceeds9

the performance of other algorithms. TACEP outperforms (Nu near-optimal) CLogEP by 31.7% in terms of10

pnoHit . This increase has a significant effect on the mission’s outcome considering a DBS serves many soldiers11

who need to receive critical ISR information and the available number of DBSs are limited.12

At the altitude of 800m, KCEP and TACEP again perform very close to each other in terms of ρu perfor-13

mance. It is observed that CLogEP handles the network better as the altitude increases. This gain is obtained14

via CLogEP’s interference management capability which comes with increased computational complexity. In15

regard to Nu performance, TACEP provides nearly 15% better performance than those of CLogEP and EQT.16

This result shows that the efficiency of TACEP is higher at lower altitudes.17

Trade-off curve of Nu with respect to pnoHit performance of the algorithms are shown in Figure 7. It18
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Figure 5. Number of unserved soldiers performance versus DBS altitudes. Proposed TACEP has a performance almost
equal to KCEP and very close to ClogEP.
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Figure 6. Probability of DBSs not being hit performance versus DBS altitudes. Proposed TACEP has a significantly
better performance.

shows that the best performance is provided by CLogEP, as expected. According to these results, TACEP’s1

improved pnoHit performance does not compromise the near-optimal Nu performance of CLogEP but strikes2

a good trade-off between Nu and pnoHit . In addition to that, TACEP may be chosen to meet mission specific3

requirements such as the DBSs’ deployment altitude and security.4

In the final analysis, we investigate the effect of the number of drone shooters on the probability of DBSs5

not being hit. Figure 8 shows that TACEP provides the best performance and outperforms other algorithms6

by at least 30% at all altitudes. This shows the efficiency of the TACEP on handling the increasing number of7

drone shooters present in the theater of war.8
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Figure 7. The number of unserved soldiers with respect to probability of DBSs not being hit. The results are obtained
for the altitude range [500m-900m]. The results show that our proposed fast algorithm strikes a good trade-off.
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Figure 8. Probability of DBSs not being hit performance versus number of drone shooters. DBS altitude is 700m.

5. Conclusion1

In this work, we have provided a comprehensive examination of the deployment of DBSs in an urban warfare2

scenario. In this respect, we have introduced specific challenges, namely, a GPS denied environment for the3

soldiers on the ground and presence of drone shooters aiming to destroy DBSs. Considering these challenges,4

we have proposed a fast algorithm, referred to as TACEP, to determine the positions of DBSs. Furthermore, we5

have proposed a PSO based algorithm in order to achieve near-optimal soldier coverage. Simulation results have6

shown that TACEP outperforms all other algorithms in terms of probability of DBSs not being hit. TACEP7

also provides a near-optimal coverage performance, when compared with a computation intensive PSO-based8

algorithm. Future work will consider the case of mobile soldiers and online, adaptive DBS deployment schemes.9
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