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Abstract—In this paper, cache placement problem in cellular
networks with device to device communications (D2D) is ad-
dressed. D2D transmission allows cellular bandwidth reuse which
necessitates interference management. We propose a distributed
algorithm, where the base station rewards the user terminals for
caching content and helping other nearby terminals. Each user
terminal distributively decides which contents to cache in a way
that maximizes its reward and minimizes the interference to the
base station. The base station decides the optimal reward in a
way that minimizes its cost. The proposed method is compared
with baseline caching schemes. Numerical results reveal that
the proposed method both achieves less base station cost and
interference than the benchmarks.

I. INTRODUCTION

With recent developments in the wireless communication
systems and smartphone technology, there has been an in-
creasing interest for enriched content such as video streaming.
This phenomenon results in a dramatic growth in the cellular
traffic load. Deploying more base stations, increasing the
amount of bandwidth and improvements in the physical layer
wireless communication technology can be proposed as a
solution to this problem. However, at certain locations and
at certain times of the day peak cellular load may reach to
unsupportable amounts. Caching the enriched content such as
video streaming at the network edge, such as base stations,
helpers and devices is an attractive solution in order to alleviate
the peak load [1]. With this solution, previously demanded
content can be cached at the edge nodes (i.e. base station
and devices) and these nodes can directly supply the future
demands without increasing the backhaul traffic. Caching at
the devices can be of extra help, since the cached content
can be transmitted to the nearby devices thanks to device-
to-device (D2D) transmission. This type of transmission can
be performed with low power, due to the short proximity.
Moreover, in D2D transmission devices can reuse the cellular
bandwidth which improves spectral efficiency significantly. In
this scenario, interference due to frequency reuse has to be
managed intelligently.

D2D cache management is a challenging problem that has
been studied intensively in the recent literature. For instance,
[2] analyzes the interference scaling by using stochastic ge-
ometry and finds the optimal D2D collaboration distance in
order to control the interference. The authors in [3] study
the throughput scaling of D2D caching in the presence of

coded caching. In coded caching the devices transmit the linear
combinations of packets in their cache library. In [4] authors
look at the throughput-outage tradeoff and show that a D2D
caching network is scalable, as the per user throughput is con-
stant as the network grows. Throughput scaling can be made
even better by allowing multihop transmission [5]. Scaling
results and performance limits of D2D caching networks are
summarized in [6].

The group of works mentioned above mainly considered
the limiting behavior of networks for some basic caching and
transmission schemes. However optimizing the caching policy
is also important. Two important metrics are hit probability
(the chance of finding a nearby device having the requested
content) and throughput (which also depends on the success
of the actual transmission). The authors in [7], [8] address a
stochastic network and derive the hit probability and average
throughput and then use them in optimizing the probabilistic
caching policy. In [9] effects of mobility on the hit and
success probability is investigated and it is observed that a
heavy tailed file size distribution may be better for the success
probability. In [10] optimal caching decision is found in a way
that minimizes latency. The authors in [11] propose a local
caching algorithm and a subsequent D2D matching algorithm.
The authors in [12] consider a hotspot area and search for
an optimal clustering of D2D users, where users in the same
cluster can share cached contents. In [13] caching is done at
the small base stations, but the caching decision is made based
on social D2D interactions of users. The work in [14] tries
to find the optimal amount of helpers in a D2D network. In
[15] the authors consider a dynamic system model, where the
devices request contents and they may choose to cache them
in order to help other users in the future. They don’t take into
account interference and the propose an online policy that is
far from the optimal offline policy. Another dynamic system
is considered in [16], where a single cluster of D2D users
is studied. The authors optimize distributed storage coding in
order to maximize energy efficiency.

There are a group of works such as [17], [18] that study
optimal link scheduling and/or power allocation in cellular
networks that perform D2D caching. The work in [17] also
takes into account contact duration of nearby users. These
works do not propose a caching policy.

In a cellular system of large number of nodes, it may be



better to give caching decisions in a distributed manner. Stack-
elberg game is a useful framework for distributed optimization
algorithms. In this scheme there is a leader (base station) and
followers (user terminals). The leader announces a price or
a reward and the followers optimize their decisions in order
to maximize their net utility. Then the leader can update the
price/reward in order to reach an optimal operating point. This
framework is being used in the D2D caching literature. For
example in [19] the BS gives a reward to users for helping
others and the users maximize their net utility (received reward
minus delay cost). The BS minimizes the reward it gives plus
the service cost, which is the amount of content that it cannot
offload to devices. In [20] the mobile network operator (MNO)
is the leader and the content providers (CPs) are the followers.
The MNO sells storage space to CPs and the CPs optimize
the stored contents in order to maximize the satisfaction of its
users [21].

In this work we propose a distributed algorithm for cache
placement in cellular systems with D2D transmissions. We
assume D2D transmissions that reuse the cellular bandwidth,
which necessitates interference management. Our algorithm
encourages caching of popular content by the user terminals
that would cause less interference to the base station.

II. SYSTEM MODEL

In our model network, a set N = {1, 2, . . . , N} of user
terminals (UTs) randomly distributed in a sector of a circular
cellular area. Let Nn ⊆ N be the set of neighbors of UT n.
Each UT can form D2D link with its neighbors. For simplicity
we assume that two nodes n,m are neighbors if their distance
dn,m is less than d0. Let hn,m be the channel gain from
node n to m, which incorporates pathloss, shadowing and
fading. We also assume that D2D transmissions reuse the
uplink bandwidth.

Each UT n has a cache capacity of Cn and can cache any
content from the set of available contents C = {1, . . . , C}.
Without loss of generality we assume that all contents are
of equal size and coded using rateless coding (e.g. LT or
Raptor Codes). According to this assumption a UT can cache
a fraction of a content. Let 0 ≤ xcn ≤ 1 denote the fraction
of content c cached by UT m. A UT requesting content c
can retrieve fractions of it from multiple UTs and if the total
fraction reaches 1, the content can be decoded. If the total
amount of cached content is less than 1, then the UT can
retrieve the rest of it from the BS.

Cache management mechanism depends on the content
popularity. Let pcn be the popularity of content c at UT n.
This is also the probability of content c is requested by UT
n hence

∑
c∈C p

c
n = 1. Content popularities are modeled by

a Zipf distribution and may vary for different UTs. When
UT n requests content c it first looks at its own cache. If it
has the full content, then no transmission is required. Else, if
xcn < 1, then UT n asks its neighbors in the order of increasing
distance, until the decodability threshold is satisfied.

Let γn,m be the signal to noise ratio (SNR) of transmission
from UT n to m,

γn,m =
Pn,mhn,m

σ2
(1)

Here Pn,m is the transmission power and σ2 is the noise
power. We assume that for a successful transmission SNR
should be greater than γ0. Therefore the required transmit
power for successful transmission from UT n to m becomes,

Pn,m =
γ0σ

2

hn,m
(2)

As we mentioned before, each UT orders its neighbors in
decreasing order of channel gain. Let (k)n be the kth best
neighbor of UT n. Obviously the best neighbor of a UT is itself
((0)n = n). Let [n]m is the rank of UT n among the neighbors
of UT m. The fraction of content c that UT n transmits to a
requesting UT m is as follows,

F cn,m(xcn,x
c) = min

xcn,max

0, 1−
[n]m−1∑
k=0

xc(k)m




(3)
Since UTs reuse the cellular bandwidth, they cause inter-

ference at the BS while transmitting cached content to other
nearby UTs. Let hn,0 be the channel gain between UT n and
the BS. We formulate the average interference created by UT
n as follows,

In(x) =
∑
c∈C

∑
m∈N

pcmhn,0
γ0σ

2

hn,m
F cn,m(xcn,x

c) (4)

This expression may not be the actual instantaneous inter-
ference but it gives a good reflection of it. UTs which are
too close to the BS and have distant D2D links create more
interference.

The aim of D2D caching is offloading traffic from the BS.
If the total portion of a content obtained from the neighbors is
less than 1, the residual content has to be supplied by the BS.
The average amount of total content that BS has to supply is
formulated as follows,

F0(x) =
∑
c∈C

∑
n∈N

pcn max{0, 1−
∑
m∈Nn

xcm} (5)

This is called the service cost. Decreasing the service cost
requires increasing the D2D caching. On the other hand,
increased D2D transmissions would cause interference to the
BS. Since service cost and interference are conflicting aims a
careful caching decision has to be made by UTs. According
to We will propose a distributed scheme, where each UT
determines its own caching.

III. STACKELBERG GAME FORMULATION

BS pays a reward (incentive) r to UTs proportionally to the
amount of unit content provided to its neighbors. For UT n
the net utility is the incentive received from the BS, minus the



average interference it creates at the BS while serving to its
neighbors.

max
xn

Un(r,xn,x) =
∑
c∈C

∑
m∈Nn

pcmrscF
c
n,m(xc)− wdIn(x)

(6)
s.t ∑

c∈C
xcnsc ≤ Cn (7)

∑
n∈N

In(x) ≤ Imax (8)

Here Imax is the maximum total interference constraint.
When this constraint is violated, BS signals the UTs and no
more content is cached.

The BS aims to minimize its cost, which is the total reward
(incentive) paid to UTs and the service cost, due to content
requests which cannot be offloaded.

C(r,x) =
∑
c∈C

∑
n∈N

pcnsc
∑
m∈Nn

rF cm,n(xc) + wsF0(x) (9)

Algorithm 1 states the proposed reward-based distributed
cache placement algorithm.

Algorithm 1 Stackelberg Game-Based Caching

1: Initialize reward r = 0.
2: while C(r,x) is decreasing do
3: r = r + ∆r

4: Initialize cache states xcn = 0,∀n ∈ N , c ∈ C.
5: while Converge= 0 and

∑
n∈N In(x) ≤ Imax do

6: for n ∈ N , c ∈ C do
7: ∇cn(r, x) =

U(r,xc
n+δ,x)−U(r,xc

n,x)
δ

8: end for
9: if

∑
c∈C x

c
n +∇cn(r, x)× γ ≤ Cn then

10: Update xcn = xcn +∇cn(r, x)× γ∀n ∈ N , c ∈ C
11: end if
12: end while
13: Compute C(r,x)
14: end while

BS initializes reward to zero at the beginning (Line 1).
The main loop (Lines 2-14) increases the reward in ∆r steps.
Increasing reward triggers an increase in the cached content
which reduces the serving cost of BS. In other words, more
and more traffic offloaded to D2D transmission. At a certain
point, increasing the reward more does not decrease service
cost as much as it increases the reward cost, where the total
BS cost C(r,x) starts to increase. At this point the algorithm
stops.

In the inner while loop (Lines 5-12) each device inde-
pendently calculates a gradient, ∇cn(r, x) for each content.
This basically the amount of utility increase by increasing
the caching of a content by an amount of δ. Amount of
reward is announced by the BS at each stage. Increasing
caching improves the reward of a UT, while it also increases
the interference created at the BS. Therefore this scheme

encourages caching of the popular contents and caching by
the UTs that won’t cause much interference at the BS. At one
point caching more content does not increase the reward as
much as it increases the interference cost, or the device fills
up its cache capacity, where the device stops incrementing its
cached contents. At this point the device may send a signal to
the BS. The inner loop also terminates when the total average
interference to the BS reaches the limit Imax.

In order to implement this algorithm in a distributed manner,
some information exchange between nodes is necessary. In
this manner, before algorithm starts, BS has to serve content
popularities to UTs. Also, during the algorithm, each UT
m has to receive feedback from its neighbors n about the
interference that they create at the BS (hn,0 γ0σ

2

hn,m
) in order to

handle interference constraint and each node has to inform its
neighbors about its caching status.

IV. NUMERICAL RESULTS

A. Simulation Setup

In simulations, a network model with a BS, N = 8
D2D enabled UTs and C = 20 contents is considered. UTs
are distributed in a 60o sector of a cell. According to our
assumption, all contents and UTs’ caches are of the equal
size, where sc = 1,∀c ∈ C and Cn = 2,∀c ∈ C respectively.

D2D pathloss is assumed to be 148+40 log10(dn,m), where
dn,m is the D2D link distance in kilometers. UT to BS pathloss
is assumed to be 128.1 + 36.7 log10(dn), where dn is the
distance between UT n and BS.

TABLE I: List of Simulation Parameters

Notation and Value Description
N = 8 Number of UT’s
C = 20 Number of Contents

rad = 0.2km Radius of the area
sc = 1 Size of cth content
Cn = 2 Cache size of nth UT

r = [0 − 1] Reward interval
∆r = 0.02 Step size of reward increase

δ = 0.001
Step size of the cached content increase in

the Stackelberg approach

γ = 0.001
Gradient multiplier in the Stackelberg

approach
α = 1 Skewness of the Zipf distribution
wr = 3 Weight of the reward cost
wi = 2 Weight of the interference

β = 0.005
Step size of the cached content increase in

the Baseline algorithms

B. Baseline Algorithms

In order to evaluate the performance of Stackelberg Game-
Based caching we also analyse the following baseline caching
schemes [19] in terms of cost and interference. In these base-
line schemes UTs incrementally update their initially empty
cache states until the cache size or interference constraint is
violated, iteratively depending on the following procedures.

In each iteration, each UT;
1) Random Caching (RC): Randomly selects a content and
add β amount of it to its cache.



2) Uniform Caching (UC): Adds β amount of every content
to its cache.
3) Popularity Based Caching (PBC): Adds βpcn amount of
every content to its cache. Where pcn is the preference of
content c by nth UT.
4) Greedy Caching (GC): Adds β amount of its favourite
content to its cache. When the favourite content is fully cached,
the UT starts the next favourite content.

Simulations are performed for 150 random network topolo-
gies. For each topology the distributed algorithm and the
baseline methods are run. Resulting total cost and the average
total interference to the BS for each topology is recorded.

Fig. 1: Cumulative distribution function for Base station’s total
cost, for maximum interference limit of Imax = 0.2.

Figure 1 shows the empirical cumulative distribution func-
tion of the service cost for the five methods and for Imax =
0.2. In terms of the median service cost the algorithms are
ordered as Stackelberg, PBC, UC, GC and RC. In terms
of 90-percentile service cost they are ordered similarly as
Stackelberg, PBC, GC, UC and RC. Popularity-based caching
is the best benchmark, but our algorithm achieves 20% better
service cost.

Figure 2 shows the empirical cumulative distribution func-
tion of the average total interference for the five methods
where Imax = 0.2. As seen in the result, all the baseline
schemes fill up the interference quota Imax more than half
of the cases. On the other hand, median interference for the
proposed algorithm is five times less than Imax.

Figure 3 shows the empirical cumulative distribution func-
tion of the total cost for the five methods where Imax = 0.25.
With this relaxed interference constraint, the cost performance
of Popularity Based Caching approaches to that of proposed
algorithm. When we look at the interference distribution in
Figure 4, we see that the proposed algorithm still causes
significantly less interference at the BS with respect to baseline
caching schemes.

Fig. 2: Cumulative distribution function for average total
interference to the Base station, for maximum interference
limit of Imax = 0.2.

Fig. 3: Cumulative distribution function for Base station’s total
cost, for maximum interference limit of Imax = 0.25.

V. CONCLUSION

In this work we addressed the problem of optimal and
distributed cache placement in the user terminals in the pres-
ence of D2D transmission. Unlike the literature we take into
account the interference caused at the BS by the D2D transmis-
sions. The proposed reward based distributed cache placement
scheme successfully offloads traffic to the user terminals. The
proposed algorithm both achieves better offloading and results
in significantly less interference to the BS, than the baseline
algorithms.

For the future work we plan to formulate cache placement
as a centralized optimization problem that minimizes service
cost subject to a total average interference constraint. This will
serve as a benchmark for our proposed distributed algorithms.



Fig. 4: Cumulative distribution function for average total
interference to the Base station, for maximum interference
limit of Imax = 0.25.
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