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With only the techniques of transistors and
op-amps it is possible to delve into a num-
ber of interesting areas of linear (as con-
trasted with digital) circuitry. We believe
that it 1s important to spend some time do-
ing this now, in order to strengthen your
understanding of some of these difficult
concepts (transistor behavior, feedback,
op-amp limitations, eic.) before introduc-
ing more new devices and technigues and
getting into the large area of digital elec-
tronics. In this chapter, therefore, we will
treat briefly the areas of active filters and
oscillators. Additional analog techniques
are treated in Chapter 6 (voltage regula-
tors and high-current design), Chapter 7
{precision circuits and low noise), Chap-
ter 13 (radiofrequency techniques), Chap-
ter 14 (low-power design), and Chapter
15 {measurements and signal processing).
The first part of this chapter {active filters,
Sections 5.01-5.11) describes techniques
of a somewhat specialized nature, and 1t
can be passed over in a first reading. How-
ever, the latter part of this chapter {(oscil-
lators, Sections 5.12-5.19) describes tech-
nigues of broad utility and should not be
omitted,

ACTIVE FILTERS

In Chapter 1 we began a discussion of fil-
ters made from resistors and capacitors.
Those simple RC filters produced gentle
high-pass or low-pass gain characteristics,
with a 6dB/octave falloff well beyond
the —3dB point. By cascading high-pass
and low-pass filters, we showed how to
obtain bandpass filters, again with gentle
6dB/octave “skirts.” Such filters are suffi-
cient for many purposes, especially if the
signal being rejected by the filter is far
removed in frequency from the desired
signal passband. Some examples are by-
passing of radiofrequency signals in audio
circuits, “blocking” capacitors for elimina-
tion of dc levels, and separation of mod-
ulation from a communications “carrier”
(see Chapter 13).

5.01 Frequency response with RC filters

Often, however, filters with flatter pass-
bands and steeper skirts are nceded. This
happens whenever signals must be filtered
from other interfering signals nearby in
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frequency. The obvious next question 1§
whether or not (by cascading a number
of identical low-pass filters, say) we can
generate an approximation to the ideal
“brick-wall” low-pass frequency response,
as in Figure 5.1.

V(}ut i
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Figure 5.1

We know already that simple cascading
won’t work, since each section’s input
impedance will load the previous section
seriously, degrading the response. But
with buffers between each section (or by
arranging to have each section of much
higher impedance than the one preceding
it), it would seem possible. Nonetheless,
the answer is no. Cascaded RC filters do
produce a steep wltimate falloff, but the
“knee” of the curve of response  versus
frequency is not sharpened. We might
restate this as “many soft knees do not
a hard knee make.” To make the point
graphically, we have plotted some graphs
of gain response (i.e., Vout/Vin) versus
frequency for low-pass filters constructed
from 1, 2, 4, 8, 16, and 32 identical RC
sections, perfectly buffered (F ig. 5.2).

The first graph shows the effect of cas-
cading several RC sections, each with its
3dB point at unit frequency. As more
sections are added, the overall 3dB point
is pushed downward in frequency, as you
could easily have predicted. To compare
filter characteristics fairly, the rolloff fre-
quencies of the individual sections should
be adjusted so that the overall 3dB point
is always at the same frequency. The other
graphs in Figure 5.2, as well as the next few
graphs in this chapter, are all “normalized”
in frequency, meaning that the —3dB point
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Figure 5.2. Frequency responses of multisec-
tion RC filters. Graphs A and B are linear plots,
whereas C is logarithmic. The filter responses
in B and C have been normalized (or scaled)
for 3dB attenuation at unit frequency.
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Figure 5.3. An unusually good passive bandpass filter implemented from inductors and capacitors
{inductances in mH, capacitances in pF). Bottom: Measured response of the filter circuit. [Based
on Figs. 11 and 12 from Orchard, H. J., and Sheahan, D. E, IEEE Journal of Solid-State Circuits,

Yol. SC-3, No. 3 (1970).]

{or breakpoint, however defined) is at a fre-
quency of 1 radian per second (or at 1Hz).
To determine the response of a filter whose
breakpoint is set at some other frequency,
simply multiply the values on the frequen-
cy axis by the actual breakpoint frequency
feo In general, we will also stick to the
log-log graph of frequency response when
talking about filters, because it tells the
most about the frequency response. It
lets you see the approach to the ultimate
rolloff slope, and it permits you to read
off accurate values of attenuation. In this
case {cascaded RC sections) the normal-
ized graphs in Figures 5.2B and 5.2C dem-
onstrate the soft knee characteristic of pas-
sive RC filters.

5.02 ldeal performance with LC filters

As we pointed out in Chapter 1, filters
made with inductors and capacitors can

have very sharp responses. The parallel
LC resonant circuit is an example. By
including inductors in the design, it is pos-
sible to create filters with any desired flat-
ness of passband combined with sharpness
of transition and steepness of falloff out-
side the band. Figure 5.3 shows an exam-
ple of a telephone filter and its character-
istics.

Obviously the inclusion of inductors in-
to the design brings about some magic that
cannot be performed without them. In
the terminology of network analysis, that
magic consists in the use of “off-axis poles.”
Even so, the complexity of the filter in-
creases according to the required flatness
of passband and steepness of falloff outside
the band, accounting for the large number
of components used in the preceding fil-
ter. The transient response and phase-shift
characteristics are also generally degraded
as the amplitude response is improved to
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approach the ideal brick-wall characteris-
fic.

The synthesis of filters from passive
components (R, L, () is a highly devel-
oped subject, as typified by the authorita-
tive handbook by Zverev (see chapter ref-
erences at end of book). The only problem
is that inductors as circuit elements fre-
quently leave much to be desired. They are
often bulky and expensive, and they de-
part from the ideal by being “lossy,” 1.€., by
having significant series resistance, as well
as other “pathologies” such as nonlinear-
ity, distributed winding capacitance, and
susceptibility to magnetic pickup of inter-
ference.

What is needed is a way to make
inductorless filters with the characteristics
of ideal RLC filters.

5.03 Enter active filters: an overview

By using op-amps as part of the filter de-
sign, it is possible to synthesize any RLC
flter characteristic without using induc-
tors. Such inductorless filters are known
as active filters because of the inclusion of
an active element (the amplifier).

Active filters can be used to make low-
pass, high-pass, bandpass, and band-reject
filters, with a choice of filter types accord-
ing to the important features of the re-
sponse, €.2., maximal flatness of passband,
steepness of skirts, or uniformity of time
delay versus frequency (more on this short-
ly). In addition, “all-pass filters” with flat
amplitude response but tailored phase ver-
sus frequency can be made (they’re also
known as “delay equalizers™), as well as the
opposite — a filter with constant phase shift
but tailored amplitude response.

[} Negative-impedance converters and
gyrators

Two interesting circuit elements that
should be mentioned in any overview are
the negative-impedance converter (NIC)

and the gyrator. These devices can mimic
the properties of inductors, while using
only resistors and capacitors in addition to
op-amps.

Once you can do that, you can build in-
ductorless filters with the ideal properties
of any RLC filter, thus providing at least
one way to make active filters.

The NIC converts an impedance to its
negative, whereas the gyrator converts an
impedance to its inverse. The following ex-
ercises will help you discover for yourself
how that works out.

EXERCISE 5.1
Show that the circuit in Figure 5.4 is a negative-
impedance converter, in particular that Lig =
_Z. Hint: Apply some input voltage Vv, and
compute the input current [. Thentake the ratio
to find Z;p, = V/1.

Figure 5.5

EXERCISE 5.2
Show that the circuit in Figure 5.5 is a gyrator,
in particular that Z;, = R?/Z. Hint: You can
analyze it as a set of voltage dividers, beginning
at the right.
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5.04  Key filter performance criteria

£
X

The NIC therefore converts a capacitor
to a “backward” inductor:

Zo = ISJ?W{* = Liy = jfiu(’

i.e., it is inductive in the sense of generat-
ing a current that lags the applied voltage,
but its impedance has the wrong frequency
dependence (it goes down, instead of up,
with increasing frequency). The gyrator,
on the other hand, converts a capacitor to
a true inductor:

Zo = 1/jwC — Ziy, = jwCR?

i.€., an inductor with inductance [, =
CR2.

The existence of the gyrator makes it
intuitively reasonable that inductorless fil-
ters can be built to mimic any filter us-
ing inductors: Simply replace each induc-
tor by a gyrated capacitor. The use of
gyrators in just that manner is perfectly
OK, and in fact the telephone filter illus-
trated previously was built that way. In ad-
dition to simple gyrator substitution into
preexisting RLC designs, it is possible to
synthesize many other filter configurations.
The field of inductorless filter design is ex-
tremely active, with new designs appearing
in the journals every month.

Sallen-and-Key filter

Figure 5.6 shows an example of a simple
and even partly intuitive filter. It is known
as a Sallen-and-Key filter, after its inven-
tors. The unity-gain amplifier can be an
op-amp connected as a follower, or just an
emitter follower. This particular filter is a
2-pole high-pass filter. Note that it would
be simply two cascaded RC high-pass fil-
ters except for the fact that the bottom of
the first resistor is bootstrapped by the out-
put. It is easy to see that at very low fre-
quencies it falls off just like a cascaded RC ,
since the output is essentially zero. As the
output rises at increasing frequency, how-
ever, the bootstrap action tends to reduce

“—_—_ﬂ

the attenuation, giving a sharper knee. Of
course, such hand-waving cannot substi-
tute for honest analysis, which tuckily has
already been done for a prodigious variety
of nice filters. We will come back to active
filter circuits in Section 5.06.

p— Ottput

C
mputm.—{ ; +1

Figure 5.6

5.04 Key filter performance criteria

There are some standard terms that keep
appearing when we talk about filters and
try to specify their performance. It is worth
getting it all straight at the beginning.

Frequency domain

The most obvious characteristic of a filter
is its gain versus frequency, typified by
the sort of low-pass characteristic shown
in Figure 5.7.

The passband is the region of frequen-
cies that are relatively unattenuated by the
filter. Most often the passband is con-
sidered to extend to the —3dB point, but
with certain filters (most notably the “equi-
ripple” types) the end of the passband may
be defined somewhat differently. Within
the passband the response may show vari-
ations or ripples, defining a ripple band, as
shown. The cutoff frequency, f., is the end
of the passband. The response of the filter
then drops off through a fransition region
(also colorfully known as the skirt of the fil-
ter’s response) to a stopband, the region of
significant attenuation. The stopband may
be defined by some minimum attenuation,
e.g., 40dB.

Along with the gain response, the other
parameter of importance in the frequency
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Figure 5.7. Filter characteristics versus frequency.

domain is the phase shift of the output
signal relative to the input signal. In other
words, we are interested in the complex
response of the filter, which usually goes
by the name of H(s), where s = jw, where
H, s, and w all are complex. Phase is
important because a signal entirely within
the passband of a filter will emerge with
its waveform distorted if the time delay of
different frequencies in going through the
filter is not constant. Constant time delay
corresponds to a phase shift increasing
linearly with frequency; hence the term
linear-phase filter applied to a filter ideal
in this respect. Figure 5.8 shows a typical
graph of phase shift and amplitude for a
low-pass filter that is definitely not a linear-
phase filter. Graphs of phase shift versus
frequency are best plotted on a linear-
frequency axis.,

Time domain

As with any ac circuit, filters can be
described in terms of their time-domain
properties: rise time, overshoot, ringing,
and settling time. This is of particular
importance where steps or pulses may be
used. Figure 5.9 shows a typical low-
pass-filter step response. Here, rise time
is the time required to reach 90% of the
final value, whereas settling time is the
time required to get within some specified
amount of the final value and stay there.
Overshoot and ringing are self-explanatory
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terms for some undesirable properties of
filters.
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Figure 5.8. Phase and amplitude response
for an 8-pole Chebyshev low-pass filter (2dB
passband ripple).

5.05 Filter types

Suppose you want a low-pass filter with
flat passband and sharp transition to the
stopband. The ultimate rate of falloff,
well into the stopband, will always be
6ndB/octave, where n is the number of
“poles.”  You need one capacitor (or
inductor) for each pole, so the required
ultimate rate of falloff of filter response
determines, roughly, the complexity of the
filter.

Now, assume that you have decided
to use a 6-pole low-pass filter. You are
guaranteed an ultimate rolloff of 36dB/
octave at high frequencies. It turns out
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Figure 5.9

that the filter design can now be optimized
for maximum flatness of passband re-
sponse, at the expense of a slow transition
from passband to stopband. Alternatively,
by allowing some ripple in the passband
characteristic, the transition from pass-
band to stopband can be steepened con-
siderably. A third criterion that may be
important is the ability of the filter to pass
signals within the passband without distor-
tion of their waveforms caused by phase
shifts. You may also care about rise time,
overshoot, and settling time.

There are filter designs available to opti-
mize each of these characteristics, or com-
binations of them. In fact, rational filter
selection will not be carried out as just de-
scribed; rather, it normally begins with a
set of requirements on passband flatness,
attenuation at some frequency outside the
passband, and whatever else matters. You
will then choose the best design for the
Jjob, using the number of poles necessary
to meet the requirements. In the next few
sections we will introduce the three popu-
lar favorites, the Butterworth filter (max-
imally flat passband), the Chebyshev fil-
ter (steepest transition from passband to
stopband), and the Bessel filter (maximally
flat time delay). Each of these filter re-
sponses can be produced with a variety of
different filter circuits, some of which we
will discuss later. They are all available
in low-pass, high-pass, and bandpass ver-
sions.

Butterworth and Chebyshev filters

The Butterworth filter produces the flattest
passband response, at the expense of steep-
ness in the transition region from passband
to stopband. As you will see later, it also
has poor phase characteristics. The ampli-
tude response is given by

i’gut . 1
Vin L+ (f/fe))3

where n is the order of the filter (number
of poles). Increasing the number of poles
flattens the passband response and steep-
ens the stopband falloff, as shown in Figure
5.10.
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Figure 5.10. Normalized low-pass Butterworth-
filter response curves. Note the improved
attenuation characteristics for the higher-order
filters.

The Butterworth filter trades off every-
thing else for maximum flatness of re-
sponse. It starts out extremely flat at zero
frequency and bends over near the cut-
off frequency f, (f. is usually the —3dB
point).

In most applications, all that really mat-
ters is that the wiggles in the passband re-
sponse be kept less than some amount, say
1dB. The Chebyshev filter responds to this
reality by allowing some ripples through-
out the passband, with greatly improved

“——-—.—.__._._.._________l




e

9

ACTIVE FITTERS AND OSCILLATORS
Chapter 5

sharpness of the knee. A Chebyshev filter
is specified in terms of its number of poles
and passband ripple. By allowing greater
passband ripple, vou get a sharper knee.
The amplitude is given by

Vout _ 1
Vi  [1+eC2(f/ ]2

where C,, is the Chebyshev polynomial
of the first kind of degree n, and € is
a constant that sets the passband ripple.
Like the Butterworth, the Chebyshev has
phase characteristics that are less than
ideal.
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Figure 5.11. Comparison of some common

6-pole low-pass filters. The same hlters are
plotted on both linear and logarithmic scales.

Figure 5.11 presents graphs comparing
the responses of Chebyshev and Butter-
worth 6-pole low-pass filters. As you can
see, they’re both tremendous improve-
ments over a b-pole RC filter.

Actually, the Butterworth, with its max-
imally flat passband, is not as attractive
as it might appear, since you are always
accepting some variation in passband re-
sponse anyway (with the Butterworth it
is a gradual rolloff near f., whereas with
the Chebyshev it is a set of ripples spread
throughout the passband). Furthermore,
active filters constructed with components
of finite tolerance will deviate from the
predicted response, which means that a
real Butterworth filter will exhibit some
passband ripple anyway. The graph in Fig-
ure 5.12 illustrates the effects of worst-case
variations in resistor and capacitor values
on filter response.

gain {d8)

—15

—-20

-25

frequency (linear) ~———s

Figure 5.12. The effect of component tolerance
on active filter performance.

Viewed in this light, the Chebyshev is
a very rational filter design. It is some-
times called an equiripple filter: It man-
ages to improve the situation in the transi-
tion region by spreading equal-size ripples
throughout the passband, the number of
ripples increasing with the order of the fil-
ter. Even with rather small ripples (as little
as 0.1dB) the Chebyshev filter offers con-
siderably improved sharpness of the knee
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as compared with the Butterworth. To
make the improvement quantitative, sup-
pose that you need a filter with flatness to
0.1dB within the passband and 20dB at-
tenuation at a frequency 25% beyond the
top of the passband. By actual calculation,
that will require a 19-pole Butterworth, but
only an 8-pole Chebyshev.

The idea of accepting some passband
ripple in exchange for improved steep-
ness in the transition region, as in the equi-
ripple Chebyshev filter, is carried to its log-
ical limit in the so-called elliptic (or Cauer)
filter by trading ripple in both passband
and stopband for an even steeper tran-
sition region than that of the Chebyshev
filter. With computer-aided design tech-
niques, the design of elliptic filters is as
straightforward as for the classic Butter-
worth and Chebyshev filters.

Figure 5.13 shows how you specify fil-
ter frequency response graphically. In this
case (a low-pass filter) you indicate the al-
lowable range of filter gain (i.e., the ripple)
in the passband, the minimum frequen-
cy at which the response leaves the pass-

band, the maximum frequency at which ‘

the response enters the stopband, and
the minimum attenuation in the stop-
band.

Figure 5.13. Specifying filter fre-
QuUency response parameters.

Besself filter

As we hinted earlier, the amplitude re-
sponse of a filter does not tell the whole
story. A filter characterized by a flat ampli-
tude response may have large phase shifts.
The result is that a signal in the passband
will suffer distortion of its waveform. In
situations where the shape of the wave-
form is paramount, a linear-phase filter
(or constant-time-delay filter) is desirable.
A filter whose phase shift varies linearly
with frequency is equivalent to a constant
time delay for signals within the passband,
i.e., the waveform is not distorted. The
Bessel filter (also called the Thomson filter)
had maximally flat time delay within its
passband, in analogy with the Butterworth,
which has maximally flat amplitude re-
sponse. To see the kind of improvement in
time-domain performance you get with the
Bessel filter, look at Figure 5.14 for a com-
parison of time delay versus normalized
frequency for 6-pole Bessel and Butter-
worth low-pass filters. The poor time-delay
performance of the Butterworth gives rise
to effects such as overshoot when driven
with pulse signals. On the other hand, the
price you pay for the Bessel’s constancy
of time delay is an amplitude response

]
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with even less steepness than that of
the Butterworth in the transition region
petween passband and stopband.

6 pole
Butterworth

6-pole
2 o Bessel

(S O B i i i T S
0 02 04 06 08 1.0 1.2 14 16 18 20

delay (s}

frequency [radians/s or w)

Figure 5.14. Comparison of time delays for
6-pole Bessel and Butterworth low-pass filters.
The excellent time-domain performance of
the Bessel filter minimizes waveform distor-
tion.

There are numerous filter designs that
attempt to improve on the Bessel’s good
time-domain performance by compromis-
ing some of the constancy of time delay for
improved rise time and amplitude-versus-
frequency characteristics. The Gaussian
filter has phase characteristics nearly as
good as those of the Bessel, with improved
step response: In another class there are in-
teresting filters that allow uniform ripples
in the passband time delay (in analogy with
the Chebyshev’s ripples in its amplitude re-
sponse) and yield approximately constant
time delays even for signals well into the
stopband. Another approach to the prob-
lem of getting filters with uniform time de-
lays is to use all-pass filters, also known
as delay equalizers. These have constant
amplitude response with frequency, with
a phase shift that can be tailored to in-
dividual requirements. Thus, they can be
used to improve the time-delay constancy
of any filter, including Butterworth and
Chebyshev types.

Filter comparison

In spite of the preceding comments about
the Bessel filter’s transient response, it still
has vastly superior properties in the time
domain, as compared with the Butterworth
and Chebyshev. The Chebyshev, with its
highly desirable amplitude-versus-frequen-
cy characteristics, actually has the poor-
est time-domain performance of the three.
The Butterworth is in between in both fre-
quency and time-domain properties. Table
5.1 and Figure 5.15 give more information
about time-domain performance for these
three kinds of filters to complement the
frequency-domain graphs presented earlier.
They make it clear that the Bessel is a very
desirable filter where performance in the
time domain is important.
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Figure 5.15. Step-response comparison for 6-
pole low-pass filters normalized for 3dB atten-
uation at 1Hz.

ACTIVE FILTER CIRCUITS

A lot of ingenuity has been used in invent-
ing clever active circuits, each of which
can be used to generate response functions
such as the Butterworth, Chebyshev, etc.
You might wonder why the world needs
more than one active filter circuit. The
reason is that various circuit realizations
excel in one or another desirable property,
so there is no all-around best circuit.
Some of the features to look for in active
filters are (a) small numbers of parts, both
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TABLE 5.1, TIME-DOMAIN PERFORMANCE COMPARISON FOR LOW-PASS FILTERS®?
Step Settling time Stopband sitenuation
rise time  Over- -

f3a8 (010 90%) shoot 101% t00.1% = 21, f=10f,
Type {Hz)  Poles {3} (%) (s} (s} (dB) {dB)
Bessel 1.0 2 0.4 0.4 0.6 1.1 10 36
{-3.0dB at 1.0 4 0.5 0.8 0.7 1.2 13 66
f.=1.0Hz) 1.0 & 0.8 0.6 0.7 1.2 14 92
1.0 8 0.7 0.3 0.8 1.2 14 114
Butterworth 1.0 2 G4 4 0.8 1.7 12 40
{-3.0dB at 1.0 4 0.6 11 1.0 2.8 24 80
fo=1.0Hz) 1.0 6 0.9 14 1.3 3.9 36 120
1.0 8 1.1 18 1.6 5.1 48 160
Chebyshev 1.39 2 0.4 11 1.1 1.6 8 37
0.5d8 rippie 1.09 4 0.7 18 3.0 54 31 89
(-0.5dB at 1.04 6 1.1 21 59 10.4 54 141
fo=1.0Hz) 1.02 8 1.4 23 8.4 16.4 76 193
Chebyshev 1.07 2 0.4 21 1.6 2.7 15 44
2.0dB ripple 1.02 4 0.7 28 4.8 8.4 37 96
(-2.0dB at 1.01 5] 1.1 32 8.2 16.3 60 148
fo=1.0Hz) 1.01 8 1.4 34 116 248 83 200

fal g design procedure for these filters is presented in Section 5.07.

active and passive, (b) ease of adjustability,
{c) small spread of parts values, especially
the capacitor values, (d) undemanding use
of the op-amp, especially requirements on
slew rate, bandwidth, and output imped-
ance, (e) the ability to make high-Q fil-
ters, and (f) sensitivity of filter characteris-
tics to component values and op-amp gain
(in particular, the gain-bandwidth product,
Jr). In many ways the last feature is one of
the most important. A filter that requires
parts of high precision is difficult to ad-
just, and it will drift as the components
age; in addition, there is the nuisance that
it requires components of good initial ac-
curacy. The VCVS circuit probably owes
most of its popularity to its simplicity and
its low parts count, but it suffers from high
sensitivity to component variations. By
comparison, recent interest in more com-
plicated filter realizations is motivated by
the benefits of insensitivity of filter prop-
erties to small component variability.

“___

In this section we will present several
circuits for low-pass, high-pass, and band-
pass active filters. We will begin with the
popular VCVS, or controlled-source type,
then show the state-variable designs avail-
able as integrated circuits from several
manufacturers, and finally mention the
twin-T sharp rejection filter and some in-
teresting new directions in switched-
capacitor realizations.

5.06 VCVS circuits

The  voltage-controlled voltage-source
(VCVS) filter, also known simply as a
controlled-source filter, is a variation of the
Sallen-and-Key circuit shown earlier. It re-
places the unity-gain follower with a non-
inverting amplifier of gain greater than 1.
Figure 5.16 shows the circuits for low-pass,
high-pass, and bandpass realizations. The
resistors at the outputs of the op-amps
create a noninverting voltage amplifier

2

-

i

3




b

ACTIVE FILIERS AND OSCILLATORS

Chapter 8

7 A,
1
frc-couplad ~AAAAS-AAN,

|
", i1

high-pass filter

bandpass filter

Figure 5.16. VCVS active filter circuits.

of voltage gain K, with the remaining
Hs and Cs contributing the frequency re-
sponse properties for the filter. These are
2-pole filters, and they can be Butterworth,
Bessel, etc., by suitable choice of compo-
nent values, as we will show later. Any
number of VCVS 2-pole sections may be

cascaded to generate higher-order filters.
When that is done, the individual flter sec-
tions are, in general, not identical. In fact,
each section represents a quadratic poly-
nomial factor of the nth-order polynomial
describing the overall filter.

There are design equations and tables in
most standard filter handbooks for all the
standard filter responses, usually including
separate tables for each of a number of
ripple amplitudes for Chebyshev filters.
In the next section we will present an
easy-to-use design table for VCVS filters
of Butterworth, Bessel, and Chebyshev
responses (0.5dB and 2dB passband ripple
for Chebyshev filters) for use as low-pass
or high-pass filters. Bandpass and band-
reject filters can be easily made from
combinations of these.

5.07 VCVS filter design using our
simplified table

To use Table 5.2, begin by deciding which
filter response you need. As we mentioned
earlier, the Butterworth may be attractive
if maximum flatness of passband is de-
sired, the Chebyshev gives the fastest roll-
off from passband to stopband (at the

TABLE 5.2. VCVS LOW-PASS FILTERS

Chebyshev Chebyshev
« Butter- Bessel {0.5dB) (2.0dB)
&5 worth
a K ' i, K s K
2 1586 1.272 1.268 1231 1842
4 1.152 1432 1.084 0597 1.582
2235 1606 1758 1.031 2.660
6 1068 1607 1.040 0.396 1537
1.586 1692 1.364 0.768 2448
2483 1908 2023 1011 2848
8 1038 1781 1.024 0.2957 1522
1.337 1.835 1.213 0.599 2379
1.889 1956 1593 0.861 2.711
2610 2192 2184 1.006 2913
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expense of some ripple in the passband),
and the Bessel provides the best phase char-
acteristics, i.e., constant signal delay in
the passband, with correspondingly good
step response. The frequency responses for
all types are shown in the accompanying
graphs (Fig. 5.17).

To construct an n-pole flter {n is an
even number), you will need to cascade
n/2 VCVS sections.  Only even-order
filters are shown, since an odd-order filter
requires as many op-amps as the next
higher-order filter. Within each section,
}{1 = RQ = R, and 01 == Cg = (), As 18
usual in op-amp circuits, R will typically
be chosen in the range 10k to 100k, (It is
best to avoid small resistor values, because
the rising open-loop output impedance of
the op-amp at high frequencies adds to
the resistor values and upsets calculations.)
Then all you need to do is set the gain, K,
of each stage according to the table entries.
For an n-pole filter there are n/2 entries,
one for each section.

Butterworth low-pass filters

If the filter is a Butterworth, all sections
have the same values of ? and C, given
simply by RC' = 1/2n f,, where f. is the
desired —3dB frequency of the entire filter.
To make a 6-pole low-pass Butterworth
filter, for example, you cascade three of the
low-pass sections shown previously, with
gains of 1.07, 1.59, and 2.48 (preferably
in that order, to avoid dynamic range
problems), and with identical Rs and C's
to set the 3dB point. The telescope drive
circuit in Section 8.31 shows such an
cxample, with f. = 88.4Hz (R = 180k,
' = 0.01uF).

Bessel and Chebyshev low-pass filters

To make a Bessel or Chebyshev filter with
the VCVS, the situation is only slightly
more complicated. Again we cascade sev-
cral 2-pole VCVS filters, with prescribed

————-________

gains for each section. Within each sec-
tion we again use R; = Ry = R, and
C1 = Cy = C. However, unlike the sit-
uation with the Butterworth, the RC prod-
ucts for the different sections are different
and must be scaled by the normalizing fac-
tor f, (given for each section in Table 5.2)
according to RC' =1/27f,f.. Here feis
again the —3dB point for the Bessel filter,
whereas for the Chebyshev filter it defines
the end of the passband, i.e., it is the fre-
quency at which the amplitude response
falls out of the ripple band on its way into
the stopband. For example, the response
of a Chebyshev low-pass filter with 0.5dB
ripple and f. = 100Hz will be flat within
+0dB to —0.5dB from dc to 100Hz, with
0.5dB attenuation at 100Hz and a rapid
falloff for frequencies greater than 100Hz.
Values are given for Chebyshev filters with
0.5dB and 2.0dB passband ripple; the lat-
ter have a somewhat steeper transition into
the stopband (Fig. 5.17).

High-pass filters

To make a high-pass filter, use the high-
pass configuration shown previously, i.e.,
with the Rs and C's interchanged. For But-
terworth filters, everything else remains
unchanged (use the same values for R, C,
and K). For the Bessel and Chebyshev fil-
ters, the K values remain the same, but the
normalizing factors f, must be inverted,
i.e., for each section the new fn equals
1/(fy listed in Table $5.2).

A bandpass filter can be made by cas-
cading overlapping low-pass and high-pass
filters. A band-reject filter can be made
by summing the outputs of nonoverlap-
ping low-pass and high-pass filters. How-
ever, such cascaded filters won’t work well
for high-Q filters (extremely sharp band-
pass filters) because there is great sensi-
tivity to the component values in the n-
dividual (uncoupled) filter sections. In
such cases a high-Q single-stage bandpass
circuit (e.g., the VCVS bandpass circuit
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in Table 5.2.

illustrated previously, or the state-variable
and biquad filters in the next section)
should be used instead. Even a single-stage
2-pole filter can produce a response with
an extremely sharp peak. Information
on such filter design is available in the
standard references.

VCVS filters minimize the number of
components needed (2 poles/op-amp) and
offer the additional advantages of nonin-
verting gain, low output impedance, small
spread of component values, easy adjusta-
bility of gain, and the ability to operate at
high gain or high ). They suffer from high

Normalized frequency response graphs for the 2-, 4- 6-, and 8-pole filters
The Butterworth and Bessel filters are normalized to 3dB attenuation at unit
frequency, whereas the Chebyshev filters are normalized to 0.5dB and 2dB attenuations.
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sensitivity to component values and am-
plifier gain, and they don’t lend themselves
well to applications where a tunable filter
of stable characteristics is needed.

EXERCISE 5.3
Design a 6-pole Chebyshev low-pass VCVS
filter with a 0.5dB passband ripple and 100Hz
cutoff frequency f.. What is the attenuation at
1.5f?

5.08 State-variable filters

The 2-pole filter shown in Figure 5.18 is
far more complex than the VCVS circuits,
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bandpass

— Figure 5.18. State-variable active filter,

but it is popular because of its improved
stability and ease of adjustment. [t is
called a state-variable filter and is available
as an IC from National (the AF100 and
AF150), Burr-Brown (the UAF series), and
others.  Because it is g manufactured
module, al] components except R, R,
and the two Rps are built in.  Among
Its nice properties is the availability of
high-pass, low-pass, and bandpass outputs
from the same circuit; also, its frequency
can be tuned while maintaining constant
2 (or, alternatively, constant bandwidth)
in the bandpass characteristic. As with
the VCVS realizations, multiple stages
can be cascaded to generate higher-order
filters.

Extensive design formulas and tables are
provided by the manufacturers for the use
of these convenient ICs. They show how
to choose the external resistor values to
make Butterworth, Bessel, and Chebyshev
filters for a wide range of filter orders, for
low-pass, high-pass, bandpass, and band-
reject responses. Among the nice features
of these hybrid ICs is integration of the

capacitors into the module, so that only
external resistors need be added.

Bandpass filters

The state-variable circuit, in spite of its
large number of components, is a good
choice for sharp (high-Q) bandpass filters,
It has low component sensitivities, does
not make great demands on op-amp band-
width, and is €asy to tune. For example, in
the circuit of Figure 5.18, used as a band-
pass filter, the two resistors Ry set the cen-
ter frequency, while R and R together
determine the () and band-center gain:

Rp =5.03 % 107/ f5 ohms

Ro =10°/(3.48Q + G — 1) ohms

flg = 3.16 x 10*Q /¢ ohms

So you could make a tunable-frequency,
constant-Q) filter by using a 2-section vari-
able resistor (pot) for Rp. Alternatively,
yYou could make Rq adjustable, producing

a ﬁxed-frequency, variable-() (and, unfor-
tunately, variable-gain) filter.
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EXERCISE 5.4

Calculate resistor values in Figure 5.18 to make
a bandpass filter with fy = 1kHz, (2 = 50, and
G =10.

Figure 5.19 shows a useful variant of
the state-variable bandpass filter. The bad
news 1s that it uses four op-amps; the good
news is that you can adjust the bandwidth
(i.e., Q) without affecting the midband
gain. In fact, both () and gain are set with
a single resistor each. (J, gain, and center
frequency are completely independent and
are given by these simple equations:

fO = I/QWRFC
Q=Ri/Rq
G = Rl/RG

R =~ 10k (noncritical, matched)

A,

Figure 5.19. A tlter with indepen-
= dently settable gain and ¢J.

bandpass

Figure 5.20. Biquad active filter.

Biquad filter. A close relative of the state
variable filter is the so-called biquad fil-
ter, shown in Figure 5.20. This circuit
also uses three op-amps and can be con-
structed from the state-variable ICs men-
tioned earlier. It has the interesting prop-
erty that you can tune its frequency (via
Rp) while maintaining constant bandwidth
(rather than constant (J). Here are the de-
sign equations:

f() = 1/27I'RFC
BW = 1/2xRpC
G = Rp/Ra

The @ is given by fo/ BW and equals
Rp/Rp. As the center frequency is varied
(via Rp), the () varies proportionately,
keeping the bandwidth () fy constant.
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When you design a biguad fiter from
scratch (rather than with an active filter jC
that already contains most of the parts),
the general procedure £0¢s something like
this:

1. Choose an Op-amp whose bandwidth fr
is at least 10 to 20 times G fy.

2. Pick a round-number capacitor value in
the vicinity of

C= l()/if(} jLF

3. Use the desired center frequency to
calculate the corresponding Ry from the
first equation given earlier.,

4. Use the desired bandwidth to calculate
Rg from the second equation given ear-
hier.,

5. Use the desired band-center gain to
calculate R from the third equation given
earlier.

You may have to adjust the capacitor
value if the resistor values become awk-
wardly large or small. For instance, in
a high-@ filter you may need to increase
C somewhat to keep Rp from becoming
too large (or you can use the T-network
trick described in Section 4.19). Note that
Re, Rp, and R¢ each act as op-amp loads,
and should not become less than, say, 5k.
When juggling component values, you may
find it easier to satisfy requirement |
by decreasing integrator gain (increase R F)
and simultaneously increasing the inverter-
stage gain (increase the [Qk feedback resis-
for). ~

As an example, suppose we want to
make a filter with the same characteristics
as in the last exercise. We would begin by
provisionally choosing ¢ = 0.014F Then
we find Ry = [5.9k (fo = 1kHz) and
R = 796k (Q = 50; BW:QOHZ). Finally,
Re = 79.6k (G = 10).

EXERCISE 5.5

Design a biquad bandpass filter with fo =60Hz,
BW=1Hz, and ¢ = 100.

e ————————
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Higher order bandpass filters

As with our earlier low-pass and high-
pass fiiters, it is possible to build higher
order bandpass filters with approximately
flat bandpass and steep transition to the
stopband.

You do this by cascading several lower-
order bandpass filters, the combination taj-
lored to realize the desired filter type (But-
terworth, Chebyshev, or whatever), As be-
fore, the Butterworth is “maximally flat,”
whereas the Chebyshev sacrifices passband
flatness for steepness of skirts, Both the
VCVS and state-variable/biquad bandpass
filters just considered are second order
(two pole). As you increase the filter sharp-
ness by adding sections, you generally de-
grade the transient response and phase
characteristics. The “bandwidth” of 3
bandpass filter is defined as the width be-
tween —3dB points, except for equiripple
filters, for which it is the width between
frequencies at which the response falls out
of the passband ripple channel.

You can find tables and design proce-
dures for constructing complex filters in
standard books on active filters, or in the
data sheets for active filter ICs, There are
also some very nice filter design programs
that run on inexpensive workstations (IBM
PC, Macintosh).

7 5.09 Twin-T notch filters

The passive RC network shown in Figure
5.21 has infinite attenuation at a frequency
fe = 1/2nRC. Infinite attenuation ig

out

Figure 5.21. Passive twin-T notch filter,
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uncharacteristic of RC filters in general;
this one works by effectively adding two
signals that have been shifted 180° out of
phase at the cutoff frequency. It requires
good matching of components in order to
obtain a good null at f.. It is called a
twin-T, and it can be used to remove an
interfering signal, such as 60Hz power-
line pickup. The problem is that it has
the same “soft” cutoff characteristics as all
passive RC networks, except, of course,
near f,, where its response drops like a
rock. For example, a twin-T driven by
a perfect voltage source is down 10dB
at twice (or half) the notch frequency
and 3dB at four times (or one-fourth) the
notch frequency. One trick to improve
its notch characteristic is to “activate” it
in the manner of a Sallen-and-Key filter
(Fig. 5.22). This technique looks good in
principle, but it is generally disappointing
in practice, owing to the impossibility of
maintaining a good filter null. As the filter
notch becomes sharper (more gain in the
bootstrap), its null becomes less deep.
Twin-T filters are available as prefab
modules, going from [Hz to 50kHz, with
notch depths of about 60dB (with some de-
terioration at high and low temperatures).
They are easy to make from components,
but resistors and capacitors of good stabil-
ity and low temperature coefficient should
be used to get a deep and stable notch.

Figure 5.22. Bootstrapped
twin-T.

One of the components should be made
trimmable.

The twin-T filter works fine as a fixed-
frequency notch, but it is a horror to make
tunable, since three resistors must be si-
multaneously adjusted while maintaining
constant ratio. However, the remarkably
simple RC circuit of Figure 5.23A, which
behaves just like the twin-T, can be ad-
justed over a significant range of frequency
(at least two octaves) with a single poten-
tiometer. Like the twin-T (and most active
filters) it requires some matching of com-
ponents; in this case the three capacitors
must be identical, and the fixed resistor
must be exactly six times the bottom (ad-
justable) resistor. The notch frequency is
then given by

fnotch = 1/271—0 \Y 3R1R2

Figure 5.23B shows an implementation
that is tunable from 25Hz to 100Hz.
The 50k trimmer is adjusted (once) for
maximum depth of notch.

As with the passive twin-T, this filter
(known as a bridged differentiator) has a
gently sloping attenuation away from the
notch and infinite attenuation (assuming
perfect matching of component values)
at the notch frequency. It, too, can be
“activated,” by bootstrapping the wiper of
the pot with a voltage gain somewhat less
than unity (as in Fig. 5.22). Increasing
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Q1xF 19

f being replaced by resistors, creating an in-
ductor L = kC, where k = R1R3R5/R2.
It is claimed that these gyrator-substituted
filters have the lowest sensitivity to compo-
nent variations, exactly analogous to their
passive RLC prototypes.

5.11 Switched Capacitor filters

Figure 5.23. Bridged differentiator tunable- .
notch filter. The implementation in B tunes  One drawback to these state-variable or

from 25Hz to 100Hz, biquad filters is the need for accurately

matched capacitors,  [f you build the

the bootstrap gain toward unity narrows  circuit from oP-amps, you’ve got to get

the notch, but also leads to an undesirable  pairs of stable capacitors (not ceramic or

response peak on the high frequency side electrolytic), perhaps matcheq as closely

of the notch, along with 4 reduction in  as 2% for optimum performance.  You

ultimate attenuation, also have to make a lot of connections,

since the circuits use at least three op-

amps and six resistors for each 2-pole

~15.10 Gyrator filter realizations section. — Alternatively, you can buy a

filter IC, letting the manufacturer figure

An interesting type of active filter is made  out how to integrate matched 1000pF

with gyrators; basically they are used to capacitors into his IC. IC manufacturers

substitute for inductors in traditional filter have solved those problems, but at g price:

designs. The gyrator circuit shown in The AF100 “Universal Active Filter” IC

Figure 5.24 is popular. 7, wil ordinarily  from National is a hybrid IC and costs
be a capacitor, with the other impedances about $10 apiece.
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Figure 5.25. A. Switched-capacitor integrator
B. conventional integrator.

There’s another way to implement the
integrators that are needed in the state-
variable or biquad filter. The basic idea 1s
to use MOS analog switches, clocked from
an externally applied square wave at some
high frequency (typically 100 times faster
than the analog signals of interest), as
shown in Figure 5.25. In the figure, the
funny triangular object is a digital inverter,
which turns the square wave upside down
so that the two MOS switches are closed
on opposite halves of the square wave.
The circuit is easy to analyze: When S;
is closed, C'; charges to Vi, ie., hold-
ing charge C1Viy; on the alternate half
of the cycle, Cy discharges into the vir-
tual ground, transferring its charge to Cs.
The voltage across C therefore changes by
an amount AV = AQ/Cy = VinC1/Ch.
Note that the output voltage change during
each cycle of the fast square wave 1S pro-
portional to Vi, (which we assume changes
only a small amount during one cycle of
square wave), i.e., the circuit is an integra-
tor! It is easy to show that the integrators
obey the equations in the figure.

EXERCISE 58
Derive the equations in Figure 5.25

There are two important advantages to
asing switched capacitors instead of con-
ventional integrators. First, as hinted ear-
lier, it can be less expensive (o implement
on silicon: The integrator gain depends
only on the ratio of two capacitors, not
on their individual values. In general it
is easy to make a matched pair of any-
thing on silicon, but very hard to make a
similar component (resistor or capacitor)
of precise value and high stability. As a
result, monolithic switched-capacitor filter
ICs are very inexpensive — National’s uni-
versal switched-capacitor filter (the MF10)
costs $2 (compared with $10 for the con-
ventional AF100) and furthermore gives
you two filters in one package!

The second advantage of switched-
capacitor filters is the ability to tune the
filter’s frequency (e.g., the center frequency
of a bandpass filter, or the —3dB point of
a low-pass filter) by merely changing the
frequency of the square wave (“clock”) in-
put. This is because the characteristic fre-
quency of a state-variable or biquad filter
is proportional to (and depends only on)
the integrator gain.

Switched-capacitor filters are available
in both dedicated and “universal” configu-
rations. The former are prewired with on-
chip components to form bandpass or low-
pass filters, while the latter have various in-
termediate inputs and outputs brought out
so you can connect external components
to make anything you want. The price you
pay for universality is a larger 1C package
and the need for external resistors. For ex-
ample, National’s self-contained MF4 But-
terworth low-pass filter comes in an 8-pin
DIP ($1.30), while their MF5 universal fil-
ter comes in a 14-pin DIP ($1.45), requir-
ing 2 or 3 external resistors (depending on
which filter configuration you choose). Fig-
ure 5.26 shows just how easy it is to use the
dedicated type.
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Now for the bombshell: Switched-
capacitor filters have three annoying char-
acteristics, all related and caused by the
presence of the periodic clocking signal.
First, there is clock feedthrough, the pres-
ence of some output signal (typically about
t0mV to 25mV) at the clock frequency, in-
dependent of the input signal. Usually this
doesn’t matter, because it is far removed
from the signal band of interest. If clock
feedthrough is a problem, a simple RC fil-
ter usually gets rid of it. The second prob-
lem is more subtle: If the input signal has
any frequency components near the clock
frequency, they will be “aliased” down into
the passband. To state it precisely, any in-
put signal energy at a frequency that differs
from the clock frequency by an amount
corresponding to a frequency in the pass-
band will appear (unattenuated!) in the
passband. For example, if you use an

25.8k

sig out

MF4 as a lkHz low-pass filter (ie., set
Jetock = 100kHz), any input signal energy
in the range of 99kHz~101kHz will appear
in the output band of de—1kHz. No filter at
the output can remove it! You must make
sure the mput signal doesn’t have energy
near the clock frequency. If this isn’t natu-
rally the case, you can usually use a simple
RC hilter, since the clock frequency is typi-
cally quite far removed from the passband.
The third undesirable effect in switched-
capacitor filters is a general reduction in
signal dynamic range (an increase in the
“noise floor”) due to incomplete cancella-
tion of MOS switch charge injection (see
Section 3.12). Typical filter ICs have dy-
namic ranges of 80dB-90dB.

Like any linear circuit, switched-capaci-
tor filters (and their op-amp analogs) suf-
fer from amplifier errors such as input off-
set voltage and 1/f low-frequency noise.
These can be a problem if, for example,
you wish to low-pass filter some low-level
signal without introducing errors or fluc-
tuations in its average dc value. A nice
solution is provided by the clever folks at
Linear Technology, who dreamed up the
LTC1062 “DC Accurate Low-Pass Filter”
(or the MAX280, with improved offset
voltage). Figure 5.27 shows how you use
it. The basic idea is to put the filter out-
side the dc path, letting the low-frequency
signal components couple passively to the
output; the filter grabs onto the signal line
only at higher frequencies, where it rolls
off the response by shunting the signal to
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ground. The result is zero dc error, and
switched-capacitor-type noise only in the
vicinity of the rolloff (Fig. 5.28).

50
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0 1 { /{\ }
0.1 1 10 100 1k 10k
frequency (Hz}
Figure 5.28
Switched-capacitor filter ICs are widely
available, from manufacturers such as

AMI-Gould, Exar, LTC, National, and
EGG-Reticon. Typically you can put the
cutoff (or band center) anywhere in the
range of dc to a few tens of kilohertz, as set
by the clock frequency. The characteristic
frequency is a fixed multiple of the clock,
usually 50 f.x or 100 f,,. Most switched-
capacitor filter ICs are intended for low-
pass, bandpass, or notch (band-stop) use,
though a few (e.g., the AMI 3529) are de-
signed as high-pass filters. Note that clock
feedthrough and discrete (¢lock frequency)
output waveform quantization effects are
particularly bothersome in the latter case,
since they’re both in-band.

OSCILLATORS

5.12 Introduction to oscillators

Within nearly every electronic instrument
it is essential to have an oscillator or wave-
form generator of some sort. Apart from

the obvious case of signal generators, func-
tion generators, and pulse generators them-
selves, a source of regular oscillations is
necessary in any cyclical measuring instru-
ment, in any instrument that initiates mea-
surements or processes, and in any instru-
ment whose function involves periodic
states or periodic waveforms. That in-
cludes just about everything. For exam-
ple, oscillators or waveform generators are
used in digital multimeters, oscilloscopes,
radiofrequency receivers, computers, ev-
ery computer peripheral (tape, disk, prin-
ter, alphanumeric terminal), nearly every
digital instrument (counters, timers, calcu-
lators, and anything with a “multiplexed
display”), and a host of other devices too
numerous to mention. A device without
an oscillator either doesn’t do anything
or expects to be driven by something else
(which probably contains an oscillator). It
is not an exaggeration to say that an oscil-
lator of some sort is as essential an ingre-
dient in electronics as a regulated supply
of dc power.

Depending on the application, an oscil-
lator may be used simply as a source of
regularly spaced pulses (e.g., a “clock” for
a digital system), or demands may be made
on its stability and accuracy (e.g., the time
base for a frequency counter), its adjusta-
bility (e.g., the local oscillator in a trans-
mitter or receiver), or its ability to produce
accurate waveforms (e.g., the horizontal-
sweep ramp generator in an oscilloscope).

In the following sections we will treat
briefly the most popular oscillators, from
the simple RC relaxation oscillators to the
stable quartz-crystal oscillators. Our aim
is not to survey everything in exhaustive
detail, but simply to make you acquainted
with what is available and what sorts of os-
cillators are suitable in various situations.

5.13 Relaxation oscillators

A very simple kind of oscillator can be
made by charging a capacitor through a




