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Abstract—In this study, we propose a pricing based algorithm There is a growing body of literature on energy efficient cell
that assigns user terminals (UTs) to base stations (BSs) andswitch-off. For example in [5], [6], [7] the BSs are switched
optimizes the transmission powers in a way that minimizes ,n and off at preset time periods based on the daily traffic

the energy expenditure. The algorithm takes into account tk . .
fixed energy expenditure that occurs even if a BS does not pattern. They show that the number of switch-offs (single,

transmit to any UT, therefore the proposed algorithm switctes double, triple etc.) in weekdays can change the level ofggner
off the unnecessary BSs in order to minimize the total energy consumption. However, the authors do not take into account
expenditure. We compare this algorithm with two benchmarks interference. The study in [8] assumes that the interferenc
One of them is a simple algorithm that connects each UT 10 5 taken care of by some reuse techniques. The proposed
the BS with best channel conditions. Transmission powers ar . -

then optimized iteratively. The second benchmark is the opmal a'go“thm gllocates UTs to BSs accordmg to rate gnd_ band-
solution that is found using a branch and bound technique. Te  Width requirements. The authors also define protection imarg

numerical evaluations reveal that the pricing based algothm that saves some unallocated bandwidth for the UTs that may

performs very close to the optimal. want to connect between the update periods. In additionemor
BSs tend to sleep, which condenses traffic to BSs switching
. INTRODUCTION on, and hence their proposed algorithm makes providing the

. . . . QoS difficult. The paper [9] assumes sinusoidal traffic peofil
_ With the growing energy demand in cellular communicgy, o \ghout a weekday and analyzes the performance of a
tion, energy saving techniques bgcame more important.]in mple switch-off policy. The authors of [10] also study the
the authors show that base stations’ (BSs) power consume oy efficient UT association problem, however they agsum
tion is approximately57 percent of total cellular network v+ 3 BS consumes transmission power proportional to the
energy consumption. Because of this, most of the effols, et of connected UTs, which is not realistic. In reality
in energy-saving algorithms are focused on decreasing §i€,nt UTs require much more power, moreover transmission
energy consumption of BSs. In [2] authors mention aboyer varies exponentially with number of connected UTs,
renewable energy resources, improvements in power annghﬁ ecause of time and/or frequency sharing. Finally in [18] th
and energy-aware cooperative BS power management inClufls, s combine cell switch-off with coordinated multipoi
ing BS switch-off scheme as prominent techniques for the,\sission (CoMP), which decreases the energy expendi-
reduction of BSs’ energy consumption. Transmission pO®ery, o - However, instead of presenting an explicit switch-of
not the only source of energy expenditure. Even if the BS s n&gorithm, this paper applies COMP on a BS set, after the
transmitting, there is a fixed and significant amount of eyerg, vitch-off procedure.
expenditu_re caused by the integrateq circuits, signalgssing The problem that we address is basically a joint UT-
and cooling equipment. An effective energy managemefly,iation and power control problem. This problem was
requires entirely shutting down some of the BSs dependigg,, i sly studied in the literature, like [12]. Howevertirose
on the user terminal (UT) locations and system load [3].  41ks the objective of the problem is balancing the system
BS switching (cell-switching) is one of the key featuregaq and maintaining QoS. Our objective, on the other hand,
of the SON (Self-Optimizing Networks) in LTE (Long Termjs minimizing the energy consumption possibly by switching
Evolution). In [4] BS switching algorithms under the seatio ¢ some of the BSs.
of energy savings are divided into three parts: Pricing based algorithms have been studied extensively in
1) Fully centralized and switching done by central corthe literature of power control, but as mentioned, like i8][1
troller. the aim of most of those algorithms is to decrease the transmi
artially centralized (or partially autonomous) depengiower. The main difference between power control and ce
2) Partiall lized (or partiall ) depeng The main diff b p | and cell
ing on pre-specified circumstances. switch-off techniques is that power control algorithmsusc
3) Fully autonomous by gathering information from BSen transmit power between BSs and UTs while cell switch-
via some interfaces. off techniques also take into account the fixed power expen-



diture. Besides pricing based algorithms, there are sotmer otl,,(P) that each UTn experiences is calculated as
algorithms to provide energy savings in cellular netwoF:. M
example, the study in [;4] shows that a geneti_c algorithm 1,(P) = Z Pohnn, V€N, 1)
can be used for decreasing energy expenditure in dense cell
deployment. In [15] each UT has SIR requirement and authors o
focus on maximizing the net utility function of UTs just base Where P = {Pi, P, ..., Pxr} Transmission powers from BS
on SIR. On the other hand, in our system model each UT ha&'al® the connected UTs can be found using the following:
rate requirement and the net utility is the number of coreect W P honn
UTs minus the power expenditure. N, log, <1 +

The goal of this paper is to minimize the total powe
expenditure on the network via pricing based algorithm w

propose. The contributions of this algorithm are given as N Ro W Ny + I,(P)
follows: P, =2 W — UT’

« Performance, which is optimal or very close to optimal. )

. Being a very fast algorithm compared to Branch amds stated above UTs connected to a BS use time-sharing.
Bound-based optimal method Average transmission power of B& can be found as

m=1

m) :RO; VTLENm (2)

ransmission power from B&: to UT n can be found as

VYm € M,n € MN,,.

« Being amenable to distributed implementation. P o_ 0 N,, =0 Yme M. (@)
e NL,” ZHGNm an Nrn >0 7 m '
Il. SYSTEM MODEL _
Total power expenditure becomes
In this paper, we consider downlink transmission in a
cellular wireless system)l/ BSs andN UTs are located in Pr= Z P, +1Ip, ~oF, (5)

the service area. We assume that the channel between BSs and meM

UTs only consists of distance-based path loss and shadowiifiee b is the baseline fixed power expenditure, which has to
In other words, the BS assignment is made by taking in{Q, ;sed if at least one one UT is connected to the BS..o

m

account the slow-varying channel conditions. Each UT has@ine indicator function denoting that BS is transmitting.
rate requiremenf?y bps and the system bandwidiii Hz is

reused by each BS. If multiple UTs are attached to the same [1l. PRICING BASED CELL SWITCH-OFF

BS, they access the BS using time-sharing. As the number ofn this algorithm, we benefit from aet utility concept,
UTs connected to a BS\(,) increases the required power alsqyhere the net utility of a BS is defined as the number of
increases. For convenience, we show the notations to fatenulsypported UTs (i.e., utility) minus the power expendituye b

the problems in Table I. the BS (i.e., cost). The utility and the cost (hence the net
utility) become zero, if the BS does not support any UT (i.e.,
TABLE I: List of Notations is switched off). The net utility function can be found as

M number of BSs NUp(Np)
M set c:)f BS? - 1 QNM% 1
N number o s _
N set of UTs = Nm —a X N, Z T +In, >0 |,
Ro rate requirement for all UTs nesy™
w bandwidth Ym e M. (6)
Np, number of UTs connecting to B& . . N
Nom set of UTs connecting to BS: In this expression, the s&l,)~ is the N,,, UTs (among the
Ppn  power from BSm to UT n unconnected ones) with the highest valuelgf,,. 'y, is
Pm average power of B&n the channel gain between BS and UT n divided by the
Py baseline power expenditure interference plus noise of Uit. The parametet is the power
hmn  channel gain between B& and UTn price. Asa decreases, the BSs tend to connect to more users.
No  noise level In the pricing algorithm in Algorithm 1, initially the price
In(P) interference experienced by UT « is set to a high value. In the inner iteration (Lines 4-19)
NUrm  net utlity function for BSm each BS looks at the UTs that are not connected to other
an To+NoW BSs yet. The optimal set of UTs to connect (the ones with
Sm™ Z‘:Itcsf bestNyy, idle UTs according td'm; best channel gain to interference ratio) is found according
o

to the net utility function (6). If net utility is positive,hen

the BSm™* with maximum net utility connects to those UTs
Let the assignment of UTs to BSs result i,, UTs (Line 9). At this point the BSs have to communicate their

connected to BSn. Once the BS assignments are made, theet utility values with each other. Transmission power and

optimal powers can be calculated iteratively [16]. Integfece interference values are updated by all BSs (Line 10). The




Algorithm 1 : The proposed pricing based algorithm Algorithm 2 : Nearest base station algorithm

1: Initialize pricea = a9, andl,, =0, P,, =0, P, ,, =0, 1: Initialize I, =0, Vn, P, ,», =0, Vn,m

Ny =0,Yn e N,m e M. 2: for each UT ndo

2. SetS = M, converge =fal se 3:  Find the BSm* = argmaxy{hmn} and N« =
3: while (JY_, N, # N do N U {n}
4. while converge =fal se do 4: end for
5 SetP) = P, ,YmeM 5: while not convergalo
6: for m € S do 6: CalculateP,,, for all m € M, n € N, using (3)
7 Among the UTs inN — Upy2mNyy,, find the 7. For allm € M, calculateP,, using (4)

optimal set of UTSN, = argmax{NU,,(N,,)} 8  Calculate the new interference valuggP), Vn € N

using (6). Note thatV,, < N — Zm’;ﬁm N, using (1)
8: end for 9: end while
o: Find m* = argmaxn,es{NU;,(N;,)}, and Set

N = N B
10:  lteratively updateP,,, P, andI,(P), m € M, B, Optimal Solution Based on Branch and Bound
n € N using (1), (3), (4) _ . . _

11: if 3, cnf|l— Pon/Pl| < € then Branch gn_d bound technlq_ue_ [17] is used to f|r_1d the optimal
12: converge =true UT association and transmission power. This is an exhaus-
13: else tive search technique, where each possible UT association
14- S=S_m is formed as branches of a tree and some sub-trees can be
15: if S =0 then totally eliminated from search, if they are guaranteed to be
16: S=M suboptimal. The root of the tree is the case that UTs are not
17: end if associated with any BS, and its branched ifto branches,
18: end if which correspond to UT 1 associated with BS2, ..., M,

respectively. Each of these branches are further branctted i
M branches which correspond to BS association of UT 2. A
node on this tree, with depth defines the BS association of
the first D UTs, and the rest of the associations are defined
in its subtrees. The upper and lower bound for the energy

: - .expenditure of each node on the tree are defined as follows:
UTs communicate their interference values and connection
1) Upper Bound: The noded +1,D + 2, ..., N are asso-

status with the BSs. BSn* is excluded from the seS s - A > .
ciated to their respective nearest BSs. Then the iterative

and the remaining BSs try to include UTs until the power R |
values converge. The outer iteration checks, if there dlie st ~ POWer optimization is performed by applying (1) to (4).
Total power expenditure is calculated by (5).

any unconnected UTs. If there are, then the price value is X ) : e
decreased by multiplying with < 1 (Line 20). The algorithm ) Lower Bound: First the iterative power optimization is
terminates when all the UTs are connected to a BS. If the total Performed over the nodesto D, and the total power
cellular area is small, then one BS (with the best conneption ~ €xPenditure is calculated by (5). Then, each of the nodes
usually connects all UTs in the first iteration (which will be D+1,D+2,..,N are connected the nearest BSs, but
their corresponding transmission powers are calculated

observed in the numerical results). The proposed algorithm ' ) !
can be implemented distributively. The algorithm is alsteab as if they to do not experience any interference, and as
if they use all the available bandwidifir.

to work when a new UT joins the network.

At each step the branch with the lowest lower bound is found
and further branched (forming new nodes). If the lower bound
of any branch is greater than the upper bound of any other
A. Nearest Base Station Assignment branch, then the former branch is pruned. This eliminates th

: _ . sub-branches of that branch improving the efficiency of the
In nearest BS assignment each WTis assigned to the exhaustive search.

BS m* maximizing h,,,. Then the transmission powers are
optimized iteratively using (2), (3), (4) and (1). The aligjiom

can be summarized in Pseudocode 2. This algorithm can be
implemented in a distributed manner. Once the BSs send pilotn Table Il simulation parameters are given. For simulation
signals, each UT can connect to the one with the highgsirameters, we benefit from ITU-R M.2135 report [18]. The
received power. Each BS then computes the required transBfs are uniformly spaced and the UTs are placed randomly
powers based on the channel conditions of the connected Udscording to uniform distribution inside the square caltul
UTs then send their interferences values, and power compayout. Figure 1, Figure 2, Figure 3 represent BSs and UTs
tation goes on in a distributed manner until convergence. deployment scenario 10 and UTs associations for nearest

19: end while
200 a=pfxa Whereg <1
21: end while

IV. BENCHMARK ALGORITHMS

V. NUMERICAL RESULTS



base station algorithm, pricing based algorithm, and agtim

solution, respectively.
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Fig. 3: BSs and UTs deployment scenario 10 and UTs
associations for optimal solutiond/=4 BSs, N=10 UTs,
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Fig. 1: BSs and UTs deployment scenario 10 and UTs

associations for nearest base station algoritid=4 BSs,

N=10 UTs, 2002000 n? area.
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All UTs have 500 kbps rate requirement and each Br
has 5 MHz bandwidth. In the pricing based algorithm, th
initial price is N/P,, and = 0.95. Among the deployment
scenarios, we chose the Urban-Macro (UMa) cell scenario @
the path-loss depends on several parameters , which aé li
in Table 1l. When the values in Table Il are used, the path loSs

model boils down to,

PL [dB] = 8.19 + 39.08 log, ,(d).

I
1600

I
1800

2000

TABLE II: Simulation Parameters
Parameter Value
Cellular Layout Square
Number of UTs 10, 20
Number of BSs 4,9
Thermal Noise Level -174 dBm/Hz
Log-normal Shadowing 6 dB
Street Width §) 20 m
Average Building Height %) 15m
BS Height ¢ps) 25m
Carrier Frequency f) 2.5 GHz
UT Height GyT) 1.5m
Fixed Power Expenditurely) 50 W
Rate RequirementH) 500 kbps

We compare the performances of three solutions, which are
the pricing based algorithm (Algorithm 1), nearest BS allo-
cation (Algorithm 2), and the optimal solution (Algorithnm).3
Figure 4 shows the power expenditure performancelicrd
BSs, N=10 UTs, 20062000 nt total cellular area, and for
Fig. 2: BSs and UTs deployment scenario 10 and UT20 randomly generated scenarios. These randomly generated
associations for pricing based algorithd/=4 BSs, N=10 scenarios are created by generating the user locations and
channel gains. The BSs are fixed and equally spaced in the
cellular area. As seen from the results, pricing based lgor

sults in almost three times less power expenditure than th
earest BS algorithm.The nearest BS algorithm spends very
fow transmit power, but of them uses all the four BSs, resglti
inﬁja high fixed power expenditure (200 W). We see in almost
scenarios that the pricing based algorithm results imogd
ower expenditure, and uses only one BS.

Figure 5 shows the power expenditure performancéfed

BSs,N=20 UTs, 2006 2000 nt total cellular area, and for 20
randomly generated scenarios. This is a denser network, and
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the nearest BS algorithm uses all of the BSs in all scenarigs. _. : .
As seen from the results, pricing based algorithm usuakys us%s'g' 7: Power expenditure for 20 random scenaris=9 BSs,

two BSs and spends almost as half power as the nearest]g§20 UTs, 10061000 nt area.

algorithm. In some scenarios the pricing based algorithm is

very close to the optimal. On the average, the pricing basedrigure 7 reflects a very dense scenario witf=9 BSs,

algorithm results in 15% more power expenditure than the=20 UTs and 10081000 nt total cellular area. The results

optimal solution. clearly show that the proposed algorithm uses one BS and
Figure 6 shows the power expenditure performance féinds the exact optimal allocation in all of the scenariosc8i

M=4 BSs,N=20 UTs, 8008000 nt total cellular area, and there are many close BSs, the nearest BS algorithm uses most

for 20 randomly generated scenarios. In these scenaries, dfi them and results in poor performance.

transmit power dominates the total power expenditure, andFigure 8 is generated for the scenarios of 9 BSs, 20 UTs

more of the BSs are used. The pricing based algorithm finasd 4000« 4000 n? total cellular area. The results are similar

the optimal solution in five scenarios. In addition, in manwith the ones in Figure 5, where the pricing based algorithm
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is within 23% of the optimal solution on average. (11

VI. CONCLUSIONS ANDFUTURE WORK

In this work we studied an energy efficient BS assignmeﬁtz]
scheme for cellular networks. We considered schemes that
switch off some of the BSs in order to avoid the fixed ener%
expenditure and decrease the overall energy expendituze.
proposed a pricing based iterative algorithm, where a power
price is decreased until all of the UTs connect to a B§4
The algorithm is amenable to distributed implementatidme T
simulation results reveal that especially for dense neksor
the proposed algorithm finds the optimal allocation. For tH&d]
opposite case (larger networks) our algorithm is within 5%
of the optimal. For the scenarios in between, our algorithfre]
is within 20-25% of the optimal. In all of the scenarios, the
proposed algorithm provides significant energy savingsrwhﬁﬂ
compared with a nearest-BS algorithm.

A possible direction for future work is considering a dy-
namic scenario, where users randomly join and leave thg]
network. In this case, the optimal cell switch off and power
control can be modeled as a complex Markov Decision Pro-
cess. In order to simplify this process, a simpler celluladed
and interference model can be used. In fact our proposed
algorithm can still be used, whenever a user joins or ledwes t
network. However our algorithm isyopic, as it only considers
the current network condition rather than the future. Iditga
reserving some resource for future user arrivals improee th
energy performance. Another issue that has to be considered
is investigating the effects of our algorithm on the&r energy
expenditures, in addition tBS energy expenditures.

REFERENCES

[1] C. Han et al., “Green radio: Radio technigues to enabkrgnefficient
wireless networks,JEEE Commun. Mag., vol. 49, no. 6, pp. 46-54, May
2011.

Z. Hasan, H. Boostanimehr, and V.K. Bhargava, “Greefutzl network:
A survey, some research issues and challendB&E Commun. Surveys
Tuts., vol. 13, no. 4, pp. 524-540, Fourth Quarter 2011.

E. Oh, B. Krishnamachari, X. Liu, and Z. Niu, “Toward dyn& energy-
efficient operation of cellular network infrastructurd EEE Commun.
Mag., vol. 49, no. 6, pp. 56-61, June 2011.

4G Americas, “Self-optimizing networks: The benefits3®N in LTE,”
White Paper, Jul. 2011.

M. Marsan, L. Chiaraviglio, D. Ciullo, and M. Meo, “Optiah energy
savings in cellular access network,” IEEE Int. Conf. on Commun.
Workshops, Jun. 2009, pp. 1-5.

M. Marsan, L. Chiaraviglio, D. Ciullo, and M. Meo, “Multle daily base
station switch-offs in cellular network,” idth Int. Conf. on Commun.
and Electron., Aug. 2012.

K. Dufkova, M. Bjelica, B. Moon, L. Kencl, and J.Y. Le Boad,
“Energy savings for cellular network with evaluation of iegt on data
traffic performance,” inEuropean Wreless Conf., 2010, pp. 916-923,
Apr. 2010.

S. Zhou, J. Gong, Z. Yang, Z. Niu, and P. Yang, “Green nmohitcess
network with dynamic base station energy saving,A@M MobiCom,
vol. 9, no. 262, pp. 10-12, 2009.

E. Oh and B. Krishnamachari, “Energy savings throughatyit base
station switching in cellular wireless access networks/HEE GLOBE-
COM, pp. 1-5, Dec. 2010.

K. Son, H. Kim, Y. Yi, and B. Krishnamachari, “Base statioperation
and user association mechanisms for energy-delay trad@offyreen
cellular networks,”|EEE J. Sel. Areas Commun., vol. 29, no. 8, pp.
1525-1536, Sep. 2011.

G. Cili, H. Yanikomeroglu, and F. R. Yu, “Cell switch ofechnique
combined with coordinated multi-point (CoMP) transmissfor energy
efficiency in beyond-LTE cellular networks,” ifEEE |CC’ 12 Workshop
on Green Communications and Networking (ICC12 WS-GCN), Jun.
2012.

K. Son, S. Chong, and G.Veciana, “Dynamic association Ibad
balancing and interference avoidance in multi-cell neksgr |[EEE
Trans. Wireless Commun., vol. 8, no. 7, pp. 3566-3576, Jul. 2009.

] Z. Niu, Y. Wu, J.Gong, and Z.Yang, “Cell zooming for cefficient

green cellular networks,]JEEE Commun. Mag., vol. 48, no. 11, pp.
74-79, Nov. 2010.

F. Alaca, A. B. Sediq, and H. Yanikomeroglu, “A genetilg@ithm
based cell switch-off scheme for energy saving in dense degiloy-
ments,” in|EEE GLOBECOM' 12 The 8th Broadband Wreless Access
Workshop, Dec. 2012.

M. Xiao, N. B. Shroff, and E. K. P. Chong, “A utility-badepower-
control scheme in wireless cellular systemd&EE/ACM Trans. Netw.,
vol. 11, no. 2, pp. 210- 221, Apr. 2003.

R.D. Yates, “A framework for uplink power control in delar radio
systems,”|IEEE J. Sdl. Areas Commun., vol. 13, no. 7, pp. 1341-1347,
Sep. 1995.

S. Boyd, A. Ghosh, and A. MagnaniBranch and Bound
Methods (Lecture Notes). Department of Electrical Engi-
neering, Stanford University, Sep. 2012. [Online]. Avhia
http://www.stanford.edu/class/ee3920/#lectures.

“Guidelines for evaluation of radio interface techogies for IMT-
Advanced,” ITU-R, Tech. Rep. M.2135-1, 2009.



