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Abstract—A key enabler for the smart grid is the fine
grained monitoring of power utilization. Although such a
mechanism is helpful in the optimization of the whole elec-
tricity generation, distribution, and consumption cycle, it
also creates opportunities for the potential adversaries in
deducing the activities and habits of the subscribers. In
fact, by utilizing the standard and readily available tools
of Non-Intrusive Load Monitoring (NILM) techniques on the
metered electricity data, many details of customers’ per-
sonal lives can be easily discovered. Therefore, prevention
of such adversarial exploitations is of utmost importance
for privacy protection. One strong privacy preservation ap-
proach is the modification of the metered data through the
use of on-site storage units in conjunction with renewable
energy resources. In this study, we introduce a novel math-
ematical programming framework to model eight privacy
enhanced power scheduling strategies inspired and elicited
from the literature. We employ all the relevant techniques
for the modification of the actual electricity utilization (i.e.,
on-site battery, renewable energy resources, and appliance
load moderation). Our evaluation framework is the first in
the literature, to the best of our knowledge, for a com-
prehensive and fair comparison of the load shaping tech-
niques for privacy preservation. In addition to the privacy
concerns, we consider monetary cost and disutility of the
users in our objective functions. Evaluation results show
that privacy preservation strategies in the literature differ
significantly in terms of privacy, cost, and disutility metrics.

Index Terms—Smart grid, privacy, load shaping, NILM,
renewable energy, mixed integer programming, mixed in-
teger quadratic programming, goal programming, multi-
objective programming.
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Fig. 1: Non-Intrusive Load Monitoring (NILM).

I. INTRODUCTION

RECENTLY, unprecedented global initiatives have been
undertaken to upgrade the aging power grid with bidi-

rectional power and information flow capabilities into what
is known as the smart grid [1]–[3]. One of the crucial com-
ponents of the smart grid is the Demand-Side Management
(DSM) whose overarching goal is to enhance the efficacy
through energy consumption scheduling [4]–[6]. An inevitable
prerequisite of DSM methodologies is the access to consump-
tion data [7], which may be viewed by many as a potential
for privacy violation [8], [9]. Privacy is, in essence, the right
to informational self-determination (i.e., individuals must be
able to determine for themselves when, how, to what extent
and for what purpose information about them is communicated
to others) [10]. The initial goal of collecting electricity usage
information to generate an electricity profile has now become
a source of inferring behavioral information [11]. Furthermore,
there are well-known techniques to compromise the sanctity
of the information of the energy consumer, known as Non-
Intrusive Load Monitoring (NILM) where only one individual
monitor at the metering unit is enough to decide the energy
usage from the aggregate data [12], [13], as shown in Fig. 1.
Note that the aggregate data may be abused by the utility or
by unauthorized third parties.

To protect the customers’ privacy against potential NILM-
based privacy violations, two major categories of privacy
preservation techniques have been proposed in the litera-
ture [10]. First, measured electricity is reported accurately
without any distortion or obfuscation of the measured quantity
via privacy preserving data handling (e.g., data anonymiza-
tion [14], data aggregation [15]–[17]). However, such privacy
preservation requires either interacting with a trusted third
party or requires other households to collaborate, therefore,
rendering privacy to be at least partially compromised. Second,
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measured data itself can be modified to hide the actual elec-
tricity utilization within the household to mislead the inferring
techniques even when all measured data is compromised [18].

Since its inception in [19], four major categories of modi-
fication of electricity utilization for privacy preservation have
been proposed in the literature. The first approach is based on
charging/discharging a battery in the household which modi-
fies metered data to hide the salient characteristics of the actual
electricity utilization in the household [19]–[24]. The second
approach utilizes the concepts of information theory and signal
processing to distort the metered data which is treated as an
information sequence by modifying its characteristics [25],
[26]. The third approach is to reduce the time granularity of
the reporting interval which is intrinsically capable of erasing a
significant amount of information in the metered data provided
that the granularity is high (e.g., tens of minutes) [27], [28].
The fourth approach is based on the idea of utilizing heating
loads (e.g., electric water and space heaters) as tools to modify
the metered data which is similar to the first approach with
batteries [29], [30]. Nevertheless, the on-site battery based
approach is the earliest and the most widely utilized approach
for privacy preservation through load shaping [10], [14], [19],
[31], [32].

Our major contributions in this study are enumerated as
follows:

1) We created a unified stochastic mathematical program-
ming framework for a fair comparison of privacy-
preserving strategies by means of on-site batteries, ap-
pliance moderation, and renewable energy resources
(RERs).

2) We constructed Mixed Integer Programming (MIP) and
Mixed Integer Quadratic Programming (MIQP) models
for eight approaches in line with the spirit of specific
techniques/algorithms reported in the literature (i.e., all
our strategies are inspired by the existing body of work in
the literature [19]–[24] which are concisely summarized
in Section II).

3) While our optimization framework is a novel contribution
in and of itself, first in the literature to the best of our
knowledge, another major contribution is the extensive
experimental analysis through the numerical evaluations
of our MIP and MIQP models.

The rest of the paper is organized as follows: We present
a literature overview on privacy preservation through load
shaping in Section II. In Section III, we develop our stochastic
mathematical programming framework. Analysis and discus-
sion of the performances of the strategies are presented in
Section IV. Section V provides the concluding remarks.

II. RELATED WORK

In this section, we provide synopses of the major papers in
privacy-enhanced load scheduling from the literature that are
the motivating approaches for our optimization framework of
Section III.

One of the earliest studies on load shaping for privacy
preservation by utilizing a battery is reported in [19]. By
charging/discharging the battery, temporal changes in the

electricity usage measured by the electric meter is kept at
a single constant level as the battery charge level permits.
When charge/discharge state of the battery does not permit
the maintenance of the predetermined constant level, the pri-
vacy preservation strategy reveals the data until the necessary
battery charge level is restored which is the reason why this
algorithm is called the Best Effort (BE) algorithm.

Several algorithms are proposed to improve the BE algo-
rithm, such as the Non Intrusive Load Leveling (NILL) algo-
rithm [20] and the Tolerable Deviation (TD) algorithm [21].
Unlike the BE method, these algorithms allow the targeted me-
tered load to vary. Furthermore, in TD algorithm, the metered
load is allowed to take values within a range (i.e., the target
load can vary within a predetermined range). There are also
two recovery states for the battery level to charge/discharge in
both algorithms. In TD, if the battery level is too high then the
target level is set to the minimum and if the battery level is
too low then the target level is set to the maximum. Likewise,
in NILL algorithm, metered load is adjusted to recover the
battery’s charge level.

In the stepping framework, metered load is kept at dis-
crete values of a constant step size matching the battery
charging/discharging rate (whichever is lower) so that the
battery charging/discharging can be utilized efficiently [22].
Nevertheless, the main idea is again to keep the metered load
constant as long as it is sustainable by the battery charge level.

Instead of devising indirect load hiding strategies, it is
possible to directly minimize the information leakage from
the metered load. In [23], a convex optimization framework is
created with the objective of minimizing the L2 norm of the
deviation between the metered load and the target load as an
approximation to the mutual information metric.

In [24], load shaping using an on-site battery is investigated
via online stochastic optimization. Three load shaping strate-
gies are investigated to hide the household electricity usage.
It is reported that the best proposed strategy minimizes the
differences between the electricity usage of each appliance in
different time instants (i.e., L1 norm).

III. PROBLEM FORMULATION

Our main purpose in this study is to create an optimiza-
tion framework to be able to perform comparative analysis
of the load shaping algorithms presented in the literature.
Quantitative analysis of these algorithms operating optimally
will serve the research community for the understanding of
the performance bounds of these algorithms under fair and
ideal conditions. Since we are not proposing a new algorithm
we do not focus on the specific implementation details of
the aforementioned algorithms, which will render our analysis
incompatible with one another. Instead, we take the main ideas
in each algorithm and build optimization models based on
these ideas which will give us enough latitude to compare the
main design philosophy of each algorithm.

A. Base Model
We first present our base model for privacy preservation

followed by our specific models for each algorithm. Notations
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TABLE I: Symbols and their descriptions.

Symbol Description
T Total number of time slots
t, τ indices of time slots [1, 2, . . . , T ]
a index of appliances
s index of scenarios
i index of goals
ρs probability of scenario s
ct cost of electricity at time slot t ($/kWh)
NA number of appliances
Ha min. number of slots that appliance a must run for
αa operation time window start of appliance a
βa operation time window end of appliance a
Ea min. amount of energy that appliance a must spend (kWh)
Pmax
a max. power that appliance a can draw when operating (kW)
Pmin
a min. power that appliance a can draw when operating (kW)
P s
gt power generated by renewable source at time slot t (kW)
φa,t penalty cost of appliance a for operating at time t
δa penalty coefficient of appliance a
Lx pre-determined power levels (kW)
γ1 weight of cost reduction
γ2 weight of disutility
γ3 weight of privacy
∆T duration of one time slot
M a big number
Pmax max. power capacity of the entire house (kW)
Einit

b initial energy stored in the battery (kWh)
Emax

b max. energy that can be stored in the battery (kWh)
Rmax

cb max. charge rate of the battery (kW)
Rmax

db max. discharge rate of the battery (kW)
ηc charging efficiency of the battery
ηd discharging efficiency of the battery
psct power drawn from the grid at time t (kW)
dsxt coefficients used for privacy
psca,t power consumed by appliance a at time t (kW)
pscb,t power charged into battery at time t (kW)
psdb,t power discharged from battery at time t (kW)
zst a binary variable

used in our models are given in Table I. In the following
optimization models, the index s denotes the scenario index.
Renewable output is typically random and each scenario
corresponds to a different sample path for this output. Each
scenario has a certain probability, ρs. Our aim is to minimize
the expected value of the objective function as a deterministic
equivalent to this stochastic problem. For this purpose, we
generate a finite set of scenarios that is representative of the
renewable output sample space. Details of scenario generation
are provided in Section IV-A. Our objective function consists
of three separate components:

1) Minimize the expected cost: G1(s) =
∑T
t=1 ct · psct.

2) Minimize the disutility of consumers caused by late start
of the appliances: G2(s) =

∑T
t=1

∑NA
a=1 φa,t·psca,t. In this

objective, power usage in each time slot is multiplied with
a coefficient (φa,t) that increases geometrically with t,
forcing appliances to operate at earlier time slots. Details
of the disutility metric and determination of φa,t are given
in Section IV-A.

3) Minimize the information leakage, thus, maximize the
privacy: G3(s) =

∑T
t=1 F (t, s). Here, F (t, s) denotes

a measure for information leakage at time slot t under
scenario s. We will use several different strategies for
minimizing the information leakage that will be explained

later in this section. F (t, s) takes different forms depend-
ing on the strategy under consideration.

One way to deal with such multiple challenging objectives
is to use the weighted sum of the objectives as

S∑
s=1

ρs (γ1G1(s) + γ2G2(s) + γ3G3(s)) . (1)

However, since each objective has a different metric (e.g.,
dollars vs. time), in order for the summation to be logical,
the weights (γi) must be adjusted carefully for each problem
instance. To resolve this issue, we use a goal programming
approach [33] to minimize the percentage deviation of each
objective from its best possible value. In this approach, the
model is first solved with each of the objectives, Gi(s),
as a single objective model. Let Gi(s)∗ denote the optimal
objective function value of the corresponding single objective
model. We calculate the percent deviation of this objective as

Gi(s)−Gi(s)∗

Gi(s)∗
. (2)

Then to generate different non-dominated solution alternatives,
we use a minimax objective function that minimizes the sum
of the maximum weighted deviations of the three objectives
under all scenarios as follows:

Minimize
S∑
s=1

ρs · max
i∈{1,2,3}

{
γi ·

Gi(s)−Gi(s)∗

Gi(s)∗

}
. (3)

Different weights lead to different nondominated solutions in
this method. To linearize this nonlinear objective function (i)
we define auxiliary decision variable Qs to be equal to the
max term in this equation, (ii) write Eq. (4) as the single
objective function, and (iii) include Constraint (5) to have the
goal programming formulation GP.

In this approach, we solve the models separately using each
of the three objectives and attain Gi(s)

∗ values. Then input
these into the GP model and solve the goal programming
formulation. Constraint (6) dictates that power usage of an
appliance is zero outside its operation window. Constraint (7)
makes sure that appliances do not exceed their maximum
power limit. Constraint (8) ensures that appliances consume
the energy necessary to complete their operation. Constraint
(9) calculates the power drawn from the grid using the load
of the appliances, power stored to and drawn from the battery
and the power generated by the renewables. Constraints (10)
and (11) make sure that the battery operates within its capacity
[0, Emaxb ], while the battery’s charge and discharge rates are
limited by constraints (12) and (13), respectively. Constraint
(14) is added to the problem to ensure that the initial and final
energy levels of the battery are the same. Hence, there remains
sufficient amount of energy in the battery for scheduling
the next day’s power consumption. Constraint (15) limits the
power drawn from the grid at each time slot. Constraint (16)
defines the sign restrictions on the decision variables.

In the following we will describe different strategies that
can be used for maximizing privacy. Note that, some of these
strategies are developed for online control of the system.
However, in this study, we use the main ideas of the proposed
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GP: Minimize
S∑
s=1

ρsQs (4)

Subject to:

γi ·
Gi(s)−Gi(s)∗

Gi(s)∗
≤ Qs, ∀s, i ∈ {1, 2, 3} (5)

psca,t = 0, ∀s,∀t /∈ [αa, βa] (6)

psca,t ≤ Pmaxa , ∀a, t, s (7)

∆T ·
T∑
t=1

psca,t = Ea, ∀a, s (8)

psct =
NA∑
a=1

psca,t + pscb,t
/
ηc − psdb,t

/
ηd − P sg,t, ∀t, s (9)

Einitb +
τ∑
t=1

∆T · pscb,t −
τ∑
t=0

∆T · psdb,t ≤ Emaxb , ∀τ, s

(10)

Einitb +
τ∑
t=1

∆T · pscb,t −
τ∑
t=0

∆T · psdb,t ≥ 0, ∀τ, s (11)

pscb,t ≤ Rmaxcb , ∀t, s (12)

psdb,t ≤ Rmaxdb , ∀t, s (13)

T∑
t=1

pscb,t =
T∑
t=1

psdb,t, ∀s (14)

psct ≤ Pmax, ∀t, s (15)

psct, p
s
ca,t, p

s
cb,t, p

s
db,t ≥ 0 (16)

Fig. 2: Mathematical Programming framework.

strategies within an optimization framework. The uncertainty
caused by the renewable generation is handled by calculating
the expected value of the objective function by considering
different scenarios and their occurrence probabilities.

B. Best Effort Strategy

As described earlier, the main objective of the best effort
strategy is to minimize the deviation of the power drawn
from the grid in adjacent time slots [19]. Two alternative
formulations can be developed for this purpose. In the first
alternative, denoted as BE1, F (t, s) =

∣∣∣psct − psc(t−1)

∣∣∣. The
absolute value can be linearized by introducing two non-
negative decision variables, ds1t and ds2t. Then, in GP F (t, s) is
replaced with (17) and constraint (18) is added to the model.

BE1: F (t, s) = ds1t + ds2t (17)
ds1t − ds2t = psct − psc(t−1) ∀s, t > 1 (18)

In the second alternative, denoted as BE2, we use F (t, s) =
|pct − Ls| which minimizes the deviation from the average
load of all time slots under each scenario. Here, Ls denotes
this average load level in scenario s which is also a decision
variable and determined by the optimization model. After
linearizing the absolute value similar to the previous case,
F (t, s) is replaced with (17) and constraint (19) is added to
GP.

BE2: ds1t − ds2t = psct − Ls ∀s, t (19)

C. Tolerable Deviation Strategy
In this strategy, we want to keep the deviation of the power

drawn from the grid within a certain limit of the target metered
load [21], where the target is also a decision variable. That is,
we want psct ∈ [Ls − ν, Ls + ν] as long as possible and try
to minimize the number of occurrences in which psct is not
within these limits. Here, ν is a fixed parameter. This strategy
can be formulated by defining a binary decision variable zst
that indicates whether psct is within the limits or not. Then, in
GP F (t, s) is replaced with (20) and constraints (21) and (22)
are added to the model.

TD1: F (t, s) = zst (20)
psct − Ls ≤ ν +M · zst ∀s, t (21)
− psct + Ls ≤ ν +M · zst ∀s, t (22)

where M is a large number. Note that, in TD1, a single
level is used. However, it is also possible to use more than
a single level as explained in [21]. An alternative model can
be developed by introducing another binary decision variable
yst that indicates whether a new load level is used at time t or
not. F (t, s) is replaced with (23) and constraints (24) through
(27) are added to the model.

TD2: F (t, s) = zst + yst (23)
psct − Lst ≤ ν +M · zst ∀s, t (24)
− psct + Lst ≤ ν +M · zst ∀s, t (25)
Lst − Ls(t−1) ≤M · y

s
t ∀s, t > 1 (26)

− Lst + Ls(t−1) ≤M · y
s
t ∀s, t > 1 (27)

D. Non Intrusive Load Leveling Strategy
In this strategy, the number of deviations of the power drawn

from a level is minimized [20]. Although there are recovery
modes in the original approach, these are not required in the
optimization framework. Then, we can replace F (t, s) with
(20) and add constraints (28) and (29) to the model.

NILL: psct − psc(t−1) ≤M · z
s
t ∀s, t (28)

− psct + psc(t−1) ≤M · z
s
t ∀s, t (29)

E. Stepping Strategy
In this strategy, we want the power drawn from the grid

at a certain time slot to be equal to the power drawn in the
previous time slot as much as possible [22]. If it is not possible
to keep the same level, then we want the new level to be a
specific step size (κ) higher or lower than its previous value.
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To formulate this, we need two binary decision variables rs1t
and rs2t. Variable rs1t (rs2t) indicates whether the new level is
higher (lower) than the previous one or not. If both of them
are zero, then there is no change in the level. This strategy
can be formulated by replacing F (t, s) with (30) and adding
constraints (31) and (32) to the model. In (30) we minimize
the total number of level changes as the primary objective
and the deviation of the actual power drawn from the grid
from the determined level as a secondary objective. To achieve
this hierarchy, we multiply the secondary objective with a
small constant, ε. Variables ds1t and ds2t are used to linearize
|psct − Lst |.

Stepping: F (t, s) = rs1t + rs2t + ε · (ds1t + ds2t) (30)
Lst − Ls(t−1) = κ · (rs1t − rs2t) ∀s, t > 1 (31)

ds1t − ds2t = psct − Lst ∀s, t (32)

F. Minimizing the L2 Norm Strategy

In this strategy, the L2 norm of the deviation between the
metered load and the average load is minimized [23]. Let L̄s

denote the average load per time slot. Then, we use F (t, s) =∥∥∥psct−L̄s

L̄s

∥∥∥
2

which is a non-linear function. We can replace
F (t, s) with (33) and add constraint (34) to the model to attain
a quadratic formulation that can be solved to optimality by
CPLEX.

ML2N: F (t, s) = λs (33)
T∑
t=1

(
psct − L̄s

L̄s

)2

≤ (λs)2 ∀s, t (34)

G. Minimizing the L1 Norm Strategy

In this strategy, the total deviation of the metered loads of
each appliance at a certain time slot from the metered loads
at all the remaining time slots is minimized [24]. This can be
achieved by using F (t, s) =

∑NA
a=1 (maxτ{pscaτ} − pscat). By

this formula, the maximum load as well as the deviation of
the load at each time slot from this maximum is minimized
for each appliance resulting in appliance loads with minimum
deviation at different time slots. We can use zsa to linearize
this nonlinear function. Then, F (t, s) is replaced with (35)
and constraint (36) is added to the model.

ML1N: F (t, s) =
NA∑
a=1

(zsa − pscat) (35)

zsa ≥ pscat ∀a, s, t (36)

H. No Privacy Strategy

This strategy models the case where privacy preservation do
not carry any weight. It is useful for providing a baseline case
for comparisons which can be modeled by using the following
constraint:

NoPr: F (t, s) = 0 ∀s, t. (37)

IV. NUMERICAL ANALYSIS

In the first part of this section (subsection IV-A) we
present our renewable model, temporal modeling parameters,
appliance model, disutility model, and pricing model. In the
second part (subsection IV-B), we define our privacy metrics.
In the third part (subsection IV-C), we present our numerical
analysis.

A. Models, Parameters, and Scenarios

We employ photovoltaic (PV) panels that produce energy
depending on the random solar irradiance. Irradiance at each
time slot is modeled by a bimodal distribution [34], which
consists of two unimodal distributions. For each unimodal
distribution Beta pdf is used, where fb(r) is the pdf of the
solar irradiance (kW/m2) and Γ(.) is the Gamma Function.

fb(r) =

{
Γ(%+ζ)

Γ(%)Γ(ζ)r
%−1(1− r)ζ−1, 0 ≤ r ≤ 1; %, ζ ≥ 0

0, otherwise
(38)

Parameters % and ζ are calculated according to the mean (µ)
and variance (σ2) as ζ = (1− µ)(µ(1+µ)

σ2 − 1) and % = µζ
1−µ ,

respectively. Given the irradiance, renewable power output at
time t is modelled as P sgt(s) = η × S × s, where η = 0.186
is the efficiency and S = 40m2 is the solar panel area. The
mean and the variance of the solar irradiance vary with time,
which are given in [34]. Using these values, % and ζ values
are computed for each time slot. Then 4000 sample paths
of PV outputs (each of size T ) are generated. These 4000
sample paths are candidate scenarios. K-means clustering is
utilized to reduce the number of scenarios to 10, for ease of
computation [24].

In our numerical tests, we use 5-minutes (1/12 hours)
reporting intervals that corresponds to a total of T = 288
time slots. Please note that we are considering a Non-Intrusive
Load Monitoring (NILM) technique in this paper. Unlike the
intrusive approaches, NILM is based on approaches that make
load inferences from the smart meter data. Please see [35] for
our underlying privacy violation assumption. The frequency
of the smart meter data, also known as time interval data, is
our reference point in determining our T value. Based on our
research from regulatory sources, utility company practices,
smart meter manufacturer specifications, industry data analytic
companies, government reports, white papers, and academic
papers, we have concluded that the dominant interval for data
collection from smart meters is between 5 minutes and 15
minutes, 288 times a day and 96 times per day, respectively.
Please also note that our analyses are based on a rough
consensus of many papers from the literature and we thus
use similar parameters from these papers.

We consider appliances that are either time or power
shiftable, or nonshiftable [36]. Appliance parameters are pre-
sented in Table II.

Disutility model is inspired from [37], where power use
of an appliance is multiplied with a penalty coefficient at
each time slot. This coefficient grows exponentially with time,
forcing the optimal solution to move its power consumption to
earlier time slots. More specifically, penalty cost of appliance
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TABLE II: Appliances

Appliance Shft Eng Req
(kWh)

Min
Drn (h)

Power
(kW)

Intrvl

Washing
Machine

Time 0.7 3.5 0.2 19-23

Clothes
Dryer

Time 2.1 1 2.1 20-23

Dishwasher Time 1.42 2 0.71 14-16,
21-7

PHEV Time 9.9 3 3.3 22-7
Water
Heater

Power 13.75 2.5 5.5 0-8

Space
Heater-day

Power 3 1 3 15-20

Space
Heater-
night

Power 3 1 3 3-8

Iron Time 1 0.5 2 9-24
Vacuum
Cleaner

Time 0.36 0.2 1.8 9-22

Phone
Charger

Time 0.01 2 0.001 18-8

Tablet
Charger

Time 0.06 5 0.006 18-20

Oven Non 5.25 1.5 3.5 –
Stove Non 2.4 2 1.2 –
Fridge Non 1.32 24 0.055 –
Freezer Non 0.48 24 0.02 –
Kettle Non 0.5 0.25 2 –
Hair Dryer Non 0.35 0.15 2.33 –
Lighting Non 1 5 0.2 –
TV Non 0.5 4 0.125 –
PC/Laptop Non 0.2 3 0.065 –

a for operating at time t (φa,t) is obtained by utilizing the
penalty coefficient of appliance a (δa) as

φa,t =
(δa)βa−t

Ea
∀a,∀t ∈ [αa, βa]. (39)

We utilized δa = 0.9 in our analysis. For example, if αa = 3,
βa = 6, and Ea = 1 for a particular appliance a then φa,3 =
0.7290, φa,4 = 0.8100, φa,5 = 0.9000, φa,6 = 1.0000, and
φa,t = 0 ∀t /∈ [3, 6]. Assuming the appliance can complete
its task in two time slots with full power, completion of the
task in time slots 5 and 6 will result in 23.46% more disutility
than the completion of the task in time slots 3 and 4.

Time of Use (TOU) pricing model is a commonly used
model in the literature. Therefore, we utilize the pricing data
of 07/04/2016 from nyiso.com. In this data set electricity prices
change at different hours of the day. Fig. 3j shows a typical
trace of the electricity price.

B. Privacy Performance Metrics

We compare the outputs of our optimization models with
respect to three privacy criteria. Let us call pA(t) and p(t)
as the aggregate appliance load and the metered load, re-
spectively. pA(t) is the actual appliance load, whereas p(t) is
the load that can be observed by the meter. NILM discovers
appliances turning ON and OFF by detecting the changes in
the load. Therefore we consider differential loads ∆p(t) =
p(t)−p(t−1) and ∆pA(t) = pA(t)−pA(t−1) in evaluating
the privacy performance.

1) Number of Changes (NC): Most of the NILM schemes
are based on detecting the instantaneous load changes and
matching them with known appliance load signatures. Hence,
number of changes that can be observed in the metered load,
formulated as NC =

∑T
t=2 I|∆p(t)|>c0 , is a suitable privacy

performance metric [12], [20]. Here c0 is the detectable change
threshold, which is taken as 20 W. I|∆p(t)|>c0 is the indicator
function that becomes one if the load change is higher than
the threshold. Lower NC implies better privacy performance.

2) Coefficient of Determination (COD): A good privacy
scheme reduces the predictability of ∆pA(t) from ∆p(t).
First, the linear least squares (LLS) fit of the form ˆ∆pA(t) =
ϕ + χ∆p(t),∀t is computed that minimizes the mean square
difference between the actual appliance load, ∆pA(t), and
the LLS fit, ˆ∆pA(t) [19] [24]. Then the residual sum of
squares, SSres =

∑
t(

ˆ∆pA(t)−∆pA(t))2, and the regression
sum of squares, SSreq =

∑
t(

ˆ∆pA(t) −∆pA(t))2, are com-
puted. Finally, the coefficient of determination is computed as
COD = 1− SSres

SSres+SSreq
. A lower COD value implies better

privacy protection.
3) Relative Entropy (D(p||pA)): Relative entropy,

D(p||pA) =
∑
c∈C pp(c) log(

pp(c)
ppA(c)

) [19], [20], is a measure
of the difference between the empirical probability mass
functions (pmf) of differential metered and appliance loads.
Here pp(c) and ppA(c) are the pmf’s of ∆p(t) and ∆pA(t),
respectively. To obtain these pmf’s we divide the differential
load range into bins of equal size (b). pp(i) is the fraction
of load changes in [ib, (i + 1)b]. Parameter b is taken to be
2 kW. Higher D(p||pA) implies better privacy performance.

4) Combined Privacy Metric (Prcomb): In the presence of
three different privacy measures we have defined, it may be
hard to compare the presented models in terms of privacy. In
order to level the playing field, we propose a combined privacy
metric. This combined metric is formulated as Prcomb =
(NC)×(CoD)
D(p||pA) . Lower Prcomb implies a better privacy protec-

tion. When p(t) = pA(t),∀t, this means no privacy protection
and Prcomb becomes infinity. The latter corresponds to the
case without renewable power and battery.

C. Comparative Analysis
All the models presented in Section III are solved using

the generated test problems using 10 scenarios under the
stochastic programming framework. We utilized the GAMS
CPLEX 12.6.2 solver on a machine with an 8-core i7 CPU
and 16 GB RAM. The results are given in Table III and
Table IV. In these tables, each column represents a variation of
priority weights (γ1, γ2, γ3) which account for cost, disutility,
and privacy coefficients, respectively. Each entry is a 5-
tuple, [Cost, Disutility, NC , COD, D(p||pA)] representing
five performance metrics. Furthermore, the combined metric
values for all coefficient sets are presented in Table V.

For nonzero privacy weights (γ3 > 0), Stepping, NILL,
BE1 and TD2 are always the best four strategies. This can
also be observed in Fig. 3, where appliance, metered, and
battery power profiles are plotted for a single scenario. These
strategies provide flat metered loads, therefore, significantly
reduce the number of jumps in the metered load. If the privacy
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TABLE III: Results with multiple weighted objectives [Cost, Disutility, NC , COD, D(p||pA)]

Priority Weights (γ1, γ2, γ3)

Strategy (1,1,1) (10,1,1) (1,1,10) (1,10,1)

BE1 [15.12 3.26 3 0.016 2.45] [13.91 6.63 9.99 0.006 1 ] [15.81 3.33 4 0.009 2.07] [15.58 2.73 7.30 0.126 0.26]
BE2 [13.80 2.98 73.60 0.489 0.14] [12.72 4.09 79.89 0.571 0.19] [14.52 3.13 40.52 0.537 0.16] [14.63 2.65 54.98 0.191 0.22]
TD1 [13.46 2.90 41.07 0.603 0.55] [12.44 3.50 49.79 0.600 0.59] [13.70 2.96 36.62 0.581 0.58] [13.94 2.63 42.25 0.571 0.50]
TD2 [15.07 3.54 3.80 0.062 0.62] [13.75 5.90 7.82 0.086 0.79] [15.39 4.51 10.06 0.009 0.88] [15.80 2.74 4.54 0.010 0.64]
NILL [15.31 4.19 3.09 0.021 1.46] [14.17 5.32 5 0.051 1.57] [15.59 4.77 3.95 0.009 1.22] [15.90 2.85 3.91 0.010 1.05]

Stepping [15.12 3.26 3 0.003 2.33] [13.91 6.58 9.99 0.009 1.09] [15.80 3.35 4 0.006 2.17] [15.58 2.73 7.79 0.125 0.26]
L1 [15.42 3.33 95.18 0.002 0.32] [12.64 3.93 89.92 0.025 0.27] [15.78 4.87 98.18 0.009 0.35] [16.05 2.87 93.76 0.004 0.32]
L2 [14.47 3.12 212.8 0.157 0.08] [13.08 4.86 204.8 0.228 0.07] [15.41 3.32 159.2 0.179 0.13] [15.86 2.68 118 0.287 0.21]

NoPr [12.81 2.76 63.01 0.498 0.18] [12.35 3.30 61.82 0.604 0.31] [12.81 2.76 63.01 0.498 0.18] [13.25 2.62 58.53 0.413 0.20]

TABLE IV: Results with single objectives [Cost, Disutility, NC , COD, D(p||pA)]

Priority Weights (γ1, γ2, γ3)

Strategy (1,0,0) (0,0,1) (0,1,0)

BE1 [12.03 6.24 60.22 0.434 0.40] [16.02 4.64 4.80 0.011 1.79] [16.40 2.59 79.84 0.005 0.25]
BE2 [12.03 6.24 60.22 0.434 0.40] [15.93 4.79 60.28 0.019 0.31] [16.40 2.59 79.84 0.005 0.25]
TD1 [12.03 6.26 62.29 0.372 0.73] [15.87 4.29 50.28 0.466 1.50] [16.35 2.59 96.21 0.004 0.71]
TD2 [12.03 6.19 62.83 0.274 0.42] [15.59 5.16 2.49 0.006 1.15] [16.30 2.59 93.75 0.003 0.45]
NILL [12.03 6.32 62.05 0.341 0.74] [15.43 4.72 2.00 0.006 2.11] [16.33 2.59 111.8 0.005 0.53]

Stepping [12.03 6.23 63.03 0.270 0.44] [16.10 4.93 4.61 0.014 1.70] [16.25 2.59 91.41 0.073 0.40]
L1 [12.03 6.23 63.03 0.270 0.44] [16.27 4.35 98.30 0.002 0.33] [16.25 2.59 91.41 0.073 0.40]
L2 [12.03 6.33 60.42 0.446 0.38] [16.08 4.52 5.39 0.251 0.31] [16.35 2.59 92.48 0.006 0.49]

NoPr [12.03 6.24 60.22 0.434 0.40] [N/A] [16.40 2.59 79.84 0.005 0.25]

TABLE V: Combined privacy metric with multiple weighted objectives

Priority Weights (γ1, γ2, γ3)

Strategy (1,1,1) (10,1,1) (1,1,10) (1,10,1) (1,0,0) (0,0,1) (0,1,0)

BE1 0.020 0.070 0.017 3.537 65.34 0.029 1.597
BE2 257.07 240.1 136.0 47.73 65.34 3.694 1.597
TD1 45.03 50.63 36.68 48.25 31.74 15.62 0.542
TD2 0.38 0.85 0.103 0.071 40.99 0.013 0.804

NILL 0.044 0.162 0.029 0.037 28.59 0.0056 1.055
Stepping 0.0004 0.082 0.011 3.745 38.68 0.038 16.68

L1 0.595 8.33 2.52 38.68 38.68 0.596 16.68
L2 417.58 667.06 219.2 161.3 70.91 4.364 1.132

NoPr 174.32 120.45 3324 120.9 65.34 [N/A] 1,597

TABLE VI: Effects of PV module size [Cost, Disutility, NC , COD, D(p||pA)]

PV Module Area (m2)

Strategy 0 40 80

BE1 [16.87 4.38 3.10 0.003 1.99] [15.47 3.76 2.91 0.008 2.01] [14.80 3.57 3 0.013 1.56]
BE2 [14.89 3.86 74.50 0.245 0.43] [14 3.63 62.68 0.197 0.25] [13.74 3.56 49.32 0.174 0.30]
TD1 [15.37 3.98 35.80 0.642 0.71] [14.23 3.69 30.43 0.248 1.21] [13.31 3.45 29.66 0.545 0.61]
TD2 [17.08 4.48 4.40 0.010 1.25] [16.03 4.34 4.13 0.017 1.21] [15.68 4.29 4.11 0.037 1.04]
NILL [17.06 4.39 3.70 0.014 1.56] [15.42 4.02 3.11 0.009 1.86] [13.22 3.93 2.98 0.008 1.72]

Stepping [16.87 4.30 4 0.005 1.88] [15.46 3.68 3 0.005 2.77] [14.79 3.75 3 0.006 1.50]
L1 [14.16 3.67 103.6 0.041 0.27] [13.11 3.40 88.13 0.042 0.27] [12.83 3.33 83.99 0.006 0.27]
L2 [15.74 4.08 221 0.095 0.02] [14.73 3.82 203.3 0.129 0.06] [14.32 3.71 183.8 0.142 0.13]

is at least as important as the other metrics, that is, the weight
sets (1, 1, 1) and (1, 1, 10) are used, then the Stepping strategy
has the best privacy performance. After determining the four
better privacy-preserving strategies, we compare those in terms
of cost and disutility. Table III reveals that these four strategies
result in similar costs for all coefficient sets. BE1 and Stepping
perform slightly better in terms of disutility among the four
privacy preserving algorithms.

BE1 and Stepping strategies require much less run time
(a few minutes) among the top four privacy-preserving algo-

rithms. On the other hand, NILL and TD2 strategies require
several hours for runtime. BE1 and Stepping strategies are also
easier to implement as online algorithms [19], [22].

As it can be observed in Table IV, the overall minimum
cost and disutility values are attained by all algorithms when
the coefficient sets (1, 0, 0) and (0, 1, 0) are used, respectively.
On the other hand, NoPr strategy provides the best cost and
disutility values among all strategies for all coefficient sets
in Table III. This is because, while other strategies sacrifice
the cost and disutility objectives to improve the privacy, NoPr
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(a) BE1 (b) BE2

(c) TD1 (d) TD2

(e) Nill (f) Stepping

(g) MinL2Norm (h) MinL1Norm

(i) NoPr (j) Price and Renewable

Fig. 3: Metered, battery, and appliance power (Fig. 3a–3i) plus electricity price and renewable power (Fig. 3j).
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focuses only on the cost and disutility. This is an expected
trade-off between privacy and cost/disutility.

Fig. 3j presents a typical renewable power output, which
is a linear function of the PV panel surface area. Table VI
presents the performance metrics as a function of the PV panel
surface area. As the surface area increases from 0 to 80m2, on
the average more than 10% decrease in cost and disutility is
attained. As for the privacy performance, renewable capacity
does not have a significant effect on the best performing
strategies (i.e., Stepping, NILL, BE1, and TD2). Yet, strategies
that perform poor in terms of privacy are significantly affected
by the PV capacity (e.g., more than 15% decrease in NC is
achieved for BE2, TD1, L1, and L2).

We have also run experiments by utilizing 15-minute slot
durations and confirm that all our findings reported in this
paper holds for both 5 minutes (T=288) and 15 minutes
(T=96) intervals. The only noteworthy difference is that the
NC increases as slot time decreases, which is quite intuitive
(i.e., as the data collection interval increases from 5 to 15
minutes, the observed number of changes from time slot to
time slot also naturally goes down) [27], [28].

V. CONCLUSION

Demand-side management techniques, considered as the
low-hanging fruit of the smart grid efforts, rely heavily on
optimization formulations, which in turn require collection and
dissemination of fine-grained measurements and electricity us-
age data. The Achilles’s heel of the aforementioned approaches
is potential privacy violations. Load shaping with storage and
distributed renewable energy sources for privacy preservation
is one of the promising technical solutions. In this study, we
present a comprehensive comparative analysis of prominent
privacy preservation techniques based on load shaping. Our
contributions are listed as follows:

1) We have developed a novel mathematical programming
framework to model eight privacy preservation strategies.
All our strategies are inspired by the techniques reported
in the literature.

2) We have utilized all the mechanisms envisioned for load
shaping to preserve privacy through a single, unified
model (i.e., renewable energy resources, on-site battery,
and load moderation). To the best of our knowledge,
our study and framework is the first such study in the
literature for privacy preserving power scheduling.

3) We have presented a comprehensive performance analysis
in terms of monetary cost, disutility, and various privacy
metrics under fair and ideal conditions for the privacy
preservation techniques in the literature.

We believe that the mathematical programming framework
and the results of our analysis thereof are invaluable in
understanding the fundamental performance bounds of the
proposed approaches in the literature under ideal conditions.
Furthermore, the results of this study serve as a stepping
stone in developing insight and novel techniques on privacy
preservation via load shaping in smart grid.
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