
Optimal Buffer Partitioning on a Multiuser Wireless
Link

Omur Ozel Elif Uysal-Biyikoglu Tolga Girici
Department of Electrical and Electronics Engineering Department of Electrical and Electronics Engineering

Middle East Technical University TOBB University of Economics and Technology
Ankara Turkey Ankara Turkey

oozel,elif@eee.metu.edu.tr tgirici@etu.edu.tr

Abstract—We consider a finite buffer shared by multiple
packet queues. Throughput can be considerably improved by
partitioning the buffer space among the queues judiciously,
especially under a high load regime. We formulate optimal
buffer partitioning as a resource allocation problem, the solution
of which is found through a greedy incremental algorithm in
polynomial time. The rest of the work is devoted to applying the
optimal buffer allocation strategy in different scenarios modeling
a wireless downlink. First, the strategy is applied in a general
parallel M/M/1/mi system and a numerical study verifies that
the strategy may boost the throughput considerably. Then, a
multichannel extension of this system is considered when the
users have different arrival rates and channels have different
outage probabilities. Jointly optimal buffer space allocation and
channel assignment problems in this scenario are shown to be
separable. Lastly, buffer allocation is considered in a system
where users need to be multiplexed and scheduled based on
channel state. It is shown that this system can be modeled
as a set of parallel M/G/1/mi queues to which the optimum
buffer allocation strategy is again applicable. The improvement
brought by optimal buffer allocation to scheduling based solely on
channel-state is explored. It is observed that buffer optimization
can result in remarkable throughput increase on top of channel-
based user selection.

I. INTRODUCTION

Memory is a limited resource in communication devices.
While communication, computation and memory capabilities
continuously increase, with the advance of standards and
systems such as 3G and broadband wireless MAN, there
is also a substantial increase in the demand for bandwidth
and memory. For example, a typical WiMax base station is
supposed to serve a metropolitan area with hundreds of users
demanding high speed multimedia applications. With a limited
memory space, buffer management is necessary for maximum
performance in such a multiuser system.

Sharing limited buffer space among multiple packet streams
is a problem that previously attracted interest in the context of
shared-memory switches [1] and wireline networks [2]. The
two opposite extremes of buffer management are Complete
Sharing (CS) and Complete Partitioning (CP). In Complete
Sharing, packets that arrive are placed in the buffer as long

Omur Ozel is now with the Department of Electrical and Computer
Engineering, University of Maryland College Park MD 20742 USA

as there is room, regardless of which session they belong to;
whereas in CP, the buffer is divided into disjoint partitions
dedicated to each active session. CS possesses a degree of
flexibility, and can under some conditions achieve higher uti-
lization of the buffer. However, it has the drawback that a high-
rate session, or one which is highly bursty, could completely
occupy the memory space, causing low-rate sessions to suffer
packet drops, or be dropped altogether (for example, if they
have delay constraints.)

Another drawback of a CS architecture specific to a shared
wireless link is the potential loss of multiuser diversity. Ex-
ploiting multiuser diversity, i.e., the increasing probability of
finding good channels as the number of users increases [3]
requires the base station to have packets to transmit to each
user [4]. When some sessions “hog” the buffer, blocking
others, potentially the full multiuser channel capacity region
cannot be used, thus limiting throughput. Partitioning the
buffer presents a sure remedy to the “hogging” problem, as
it does not let users enter each other’s space. While there
may be obvious drawbacks of partitioning as well, such as
its inflexibility, it performs extremely well in the high-load
regime [1], which is the motivation for this work.

A multiuser wireless downlink may work in the overloaded
regime for several reasons. Such a system typically serves
various uncoordinated users, as in fixed wireless [5] Internet
access, as well as in cellular systems. It is to be expected
that sessions initiated by various user applications do not have
correct estimates of the transmission rate available to them, as
the total number of sessions is dynamic, as well as the channel
itself. Under such uncertainties, operating close to instability
may be preferable to occasionally idling and not fully utilizing
the tight wireless resource, as consequent packet drops may be
tolerated by higher-layer mechanisms (such as TCP). That is,
perhaps the unstable regime is a practical reality in wireless
systems.

While higher layer mechanisms can adjust arrival rate for
stable data transmission, they do not obviate the need to
address the overloaded regime because their response times
are typically much longer than coherence times of outdoor
channels [6], [7], and the system could easily become over-

loaded between congestion window updates.

Hence, we claim that optimal buffer partitioning can be used
together with higher layer mechanisms in order to better utilize
wireless resources. As an example, consider the situation de-
picted in Figure 1 where the last hop along the network routing
path is wireless. The buffers at the wireless transmitter will
need to have a sufficient number of packets to be able to ex-
ploit multiuser diversity and operate at a timescale determined
by the state of wireless channel. The queue lengths here could
be capped at the optimal partitioning levels. The TCP’s that
work end to end could be responsible for satisfying a long-term
rate requirement to ensure that the right number of packets
is maintained. The buffer partitioning problem also reveals a
trade-off between buffer utilization and multiuser diversity and
the tradeoff between giving individual throughput guarantees
to low rate users and maximizing overall throughput.

Host 2

Host 1

Host K−1

Host K

1

K−1

K

K−1

2

[t]

2

1

K

S [t]

S [t]

A

A

A[t]

[t]

[t]

[t]

A

S

S [t]

Wired Part (Routing, TCP Connections) Wireless Part (Broadcast Scheduling)

Fig. 1. End-to-end network connection of multiple users with a shared
wireless last hop.

Buffer partitioning can also be performed jointly with user
scheduling. This more general problem falls in optimal joint
buffer management and scheduling under finite memory which
is still open [8]. It is well known that maximum weight
matching between queue lengths and channel rates at any
time (in short, MaxWeight) is throughput-optimal [9] under
infinite memory. Though not necessarily optimal, MaxWeight
[8] is a benchmark algorithm for the finite memory system.
Note that MaxWeight requires making rate allocation decisions
based on joint queue and channel state information. We believe
that being able to separate the rate allocation problem from
the buffer management problem carries practical value, as
the former is traditionally in the physical layer and it can
be cumbersome to keep physical layer algorithms informed
about queue state. The search towards this direction is clearly
encouraged by subobtimality of MaxWeight.

A. Related Work

The work on buffer management in the literature mostly
focused on shared memory switches in wired networks. The
main problem is finding the buffer occupancy threshold, above

which the new arrivals are dropped. For example in [1],
Irland computationally finds the optimal buffer sharing policy,
that finds a simple threshold rule, which performs close to
optimal. Kamoun and Kleinrock [2] defined some hybrid
schemes in addition to complete sharing and partitioning.
These schemes provide the minimum number of dedicated
buffers and/or determine a maximum instantaneous occupancy
limit for each session. Simulation results indicate that as the
load increases the optimal allocation converges to a complete
partitioning. Foschini and Gopinath [10] analytically deter-
mine the structure of the optimal sharing policies. The optimal
policy involves limiting the buffer occupancy and dedicating
some buffer space for each session. Krishnan et. al. [11]
propose a dynamic buffer partitioning mechanism, which can
be difficult to implement in practice. Optimum scheduling and
memory management with finite buffer space was studied in
[8]. A closed form optimal scheduling policy was found for
2×2 switches with equal arrival rates [8]. The policy involves
push-out, where an existing packet is discarded in favor of a
new arrival, which may be difficult from an implementation
perspective.

To the best of our knowledge, the buffer partitioning prob-
lem has not been previously addressed in the context of
wireless networks. A related idea of modifying the Transport
Control Protocol for exploiting multiuser diversity was pre-
sented by Andrew et.al. [12].

B. Contributions

This paper mainly asks two questions: (1) Given a finite
buffer, how should we partition it among users with given
arrival and service rates to maximize total throughput? (2)
What is the throughput performance if we let scheduling
be done without regard to queue state, and use optimally
partitioned buffer for the resulting service rates? In answer to
the first question, an optimal iterative algorithm for allocating
buffer space to queues based on their arrival and service rates
will be derived. The uniqueness of the resulting throughput
maximizing buffer distribution will be shown. The second
question is mainly addressed by extensive numerical studies
using MATLAB. We first consider a “toy problem” on which
we get an encouraging answer that separately handling buffer
management and channel scheduling can get us near the
performance of MaxWeight. We then consider a downlink mul-
tiuser system, where N independent packet arrival processes
are separately queued to be sent by a single transmitter over
a wireless channel which can be described as a stationary
stochastic process. The service model depends on how the
data streams are multiplexed to be transmitted. We consider
two main channel allocation mechanisms:

• Case 1. Fixed channel allocation (e.g. an FDMA system
with orthogonal channels, experiencing outage and pos-
sibly correlated fading.)

• Case 2. Channel-Aware Dynamic Scheduling (e.g. select-
ing user(s) with good channel states at each scheduling
interval.)

In Case 1 (with parallel channels) we show that the jointly
optimal buffer allocation-scheduling problems are separable.
In Case 2, the buffer allocation problem is solved using an
approximation to the M/G/1/m blocking probability, and the
resulting schemes are compared with queue-aware scheduling
policies.

II. BUFFER PARTITIONING

In a system of N users sharing a total buffer pool of size
B, the set of feasible buffer partitions is Ψ, defined as the
following:

Ψ =

{
m = (m1,m2, ...,mN), mi ∈ N+ :

N∑
i=1

mi ≤ B

}

Accordingly, an arriving packet of user i is accepted if there
are less than mi packets belonging to user i in the queue,
otherwise, it is blocked1.

Partitioning is not necessarily throughput-optimal. In fact,
a dynamic allocation of buffer space among queues according
to a coordinate-convex policy where

∑N
i=1 mi > B (that is,

users are allowed to spill over to each other’s allocation) may
result in higher throughput [2], [10]. There are also push-out
type of policies [13] where an existing packet in the queue
can be dropped in case of arrival of another packet. However,
partitioning was observed to perform very well (and is perhaps
optimal) for unbalanced and high loads [2]. It is shown in
[10] that optimal policy for two user balanced high load case
is equally partitioning the available buffer for users. Benefit
of buffer partitioning for unbalanced load are also discussed
in [14], [11] under different data and flow models. The rest
of the paper will be about optimal partitioning and its joint
application with scheduling in a number of scenarios.

A. Maximizing Total Throughput under Buffer Partitioning

Our optimization rests on the concavity and monotonicity
of throughput with respect to both arrival rate and buffer
space in an M/G/1/m system [15], under a fixed service time
distribution. Consider a set of queues {i, 1 ≤ i ≤ N} that
work in parallel. Let T (λi,m) be the throughput of the ith

queue, with arrival rate λi when a waiting room of m packets
is allocated to this queue. In the rest, we use the shorthand
Ti(m) to mean T (λi,m). We denote by ΔTi(m) the increase

1In queues occurring in practical communication systems (such as routers
and switches) keeping track of the number of packets belonging to each
session is usually excessive. We realize that the partitionin model as given is
not necessarily practical. We will go on with this idealized model regardless
within the scope of this work, with the intention that the structural results
obtained can provide guidelines to more sophistical models.

in throughput that would result from increasing the buffer
space in queue i to m + 1.

ΔTi(m) = Ti(m + 1) − Ti(m) (1)

Increasing the waiting room always increases the through-
put [15], [16], so ΔTi(m) > 0. But, concavity implies
diminishing returns, i.e ΔTi(m + 1) < ΔTi(m) ∀m.

The buffer allocation that maximizes total throughput is a
solution to the following optimization problem:

Problem 1:

max

N∑
i=1

Ti(mi) s.t. m ∈ Ψ (2)

We now present an iterative algorithm for calculating the
optimal allocation that exploits the monotonicity and concavity
of throughput function. As no user will be denied service in
our model2, we must allocate a buffer space of at least one
unit to each user. The remaining buffer space of B −N units
then need to be distributed among the N users. The following
pseudo-code summarizes the algorithm.

Optimal Partitioning Algorithm (OP):

1. Initialize the allocation: mi = 1 ∀i
2. Compute ΔTi(mi) for all i
3. While Br �

∑
i mi < B, do step 4

4. For j = arg maxi ΔTi(mi), mj := mj + kmax

where kmax = max{k = 1, 2, . . . , B−Br|ΔTj(mj +k−1) ≥
ΔTi(mi)∀i �= j}

This algorithm was previously reported in [17] as a com-
putationally efficient version of Shih’s algorithm [18], which
solves an optimal resource allocation problem equivalent to
ours. In our setting, the basic idea of the algorithm is to
greedily allocate one more buffer space in each step to the user
(or one of the users) that would incur the maximum increase in
throughput from that additional buffer space. Because of the
monotonicity and concavity of the ΔTi(mi)’s, the increase
in throughput in each iteration is non-increasing with buffer
size for each user. Taking advantage of this fact, the number
of computations needed is reduced by allocating not one, but
k ≥ 1 buffer spaces at a time to the winner of each iteration, if
after an increase of k− 1 it will still be the winner among all
queues in terms of throughput increase per added buffer. We
next prove the optimality of algorithm OP, and then discuss
its complexity.

Theorem 1: Algorithm OP results in an optimal solution to
Problem 1.

Proof. We refer the interested reader to the proof in [17], yet,
for completeness, we include a concise proof of optimality

2Combining buffer allocation with admission or flow control is very
interesting, yet outside the scope of this work.

here: Let {m∗

i } be an optimal allocation. By feasibility,∑
m∗

i ≤ B. The total throughput with this allocation is:

N∑
i=1

Ti(m
∗

i) =

N∑
i=1

[(Ti(m
∗

i) − Ti(m
∗

i − 1))

+ (Ti(m
∗

i − 1) − Ti(m
∗

i − 2)) + . . .

. . . +(Ti(2) − Ti(1)) + Ti(1)]

=
N∑

i=1

Ti(1) +
N∑

i=1

m∗

i∑
k=1

ΔTi(k)

Note that after initialization of each user with one
unit of buffer, every possible allocation of the to-
tal B buffer spaces to the N users corresponds to
choosing B − N numbers out of the following set
of size (B − N)N : {ΔT1(1),ΔT1(2), . . . ,ΔT1(B −
N), . . . ,ΔTN (1),ΔTN (2), . . . ,ΔTN (B −N)}. OP performs
an iteration for each next buffer unit, deciding which user to
allocate this buffer unit. There are a total of B − N units of
buffer left after initialization, hence B −N iterations in total.
In iteration k, OP choses the highest of number among the yet
unchosen elements of the set. Since for each i, ΔTi(m

k
i) are

non-increasing from one iteration to the next, the algorithm is
equivalent to choosing the largest B − N largest numbers in
the set {ΔTi(mi)}, i = 1, 2, ..., N , m ∈ Ψ. The resulting sum
cannot be smaller than

∑N
i=1 Ti(m

∗

i). As OP also respects
feasibility, we conclude that the sum throughput of OP cannot
exceed the optimal, and is therefore equal to the optimal,∑N

i=1 Ti(m
∗

i).

1) Complexity: OP makes a total of B − N selections
in step 4, and per selection (except the final one) it makes
N − 1 comparisons. Overall, no more than B elements of the
set {ΔTi(mi)} are computed. So overall, OP makes O(B)
computations and O(N(B−N)) comparisons. Therefore, this
is a polynomial-time algorithm. Incidentally, note that the
problem amounts to selecting the B−N largest entries out of
a set of size N(B−N). Hence, depending on the relative sizes
of B and N it may be possible to reduce the computations
further using a binary search in this set, akin to ”bubble-
sort”. In fact, a -considerably more difficult to state- algorithm
using Lagrange multipliers and the binary search idea, with
complexity O(N2(logB)2) is reported in [19]. This could be
advantageous for B � N .

Next, we consider the application of optimal buffer alloca-
tion in several scenarios.

III. APPLICATIONS

We start by presenting the solution of the M/M/1/mk case.
Next, we investigate an idealized a model of a system with par-
allel channels that undergo independent outage corresponding
to Case 1 in the Introduction. We state and solve joint buffer
allocation and channel assignment problem. We then turn to
a setting where users or groups of users share the channel

in time, which belongs to Case 2 defined in the Introduction.
This time, the buffer allocation problem is solved for parallel
M/G/1/mk queues.

A. Parallel M/M/1/mk Queues

Consider parallel M/M/1/mk systems such that
∑

k mk =
B. We want to know the throughput-maximizing {mi}. Av-
erage throughput T and packet drop probability Pd of the
M/M/1/m queue [20] are:

T (λ, ρ,m) = λ(1 −
(1 − ρ)ρm

1 − ρm+1
) (3)

Pd(ρ,m) =
(1 − ρ)ρm

1 − ρm+1
(4)

Application of OP with the above throughput expression
yields the optimal buffer partitions. We observe that even
for parallel queues with Poisson arrivals and memoryless
service distribution, optimal partitions can yield a significant
increase in throughput compared to an even buffer allocation,
as exhibited by numerical results some of which are presented
in Figure 2. This observation motivates considering other
application scenarios for optimal partitioning. Note that the

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16

%
 In

cr
ea

se

Users / Buffer

Fig. 2. The percentage increase in total throughput v.s. users per buffer.
Optimal buffer allocation is compared to even buffer allocation in parallel
M/M/1/mi system with a total buffer of B = 3500. 25% of all users have
ρ1 = 1.1, and the remaining have ρ2 = 0.1. As more users share the buffers,
buffer allocation yields higher increase in throughput.

percentage increase in the throughput becomes higher as more
users share the available buffer space. This is due to monotone
decreasing property of ΔTi(m).

B. Parallel M/D/1/mi Queues

Towards a somewhat more realistic service model, consider
a finite memory constraint, and packets of fixed length. There
are parallel channels with constant rate, hence the service
times are deterministic. For M/D/1/K, the buffer occupancy

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

3

4

5

6

7

8

9

10

Users / Buffer

%
 In

cr
ea

se
 in

 T
hr

ou
gh

pu
t

Fig. 3. Percentage increase in throughput when the buffer management is
switched from even partitioning to optimal partitioning in M/D/1/K queues.
Percentage increase is higher for higher number of users sharing the buffer.

probabilities are, Pk = RkP0, k = 1, ...,K, where

Rk =

k∑
i=1

(−1)k−ieAi[
(Ai)k−i

(k − i)!
+

(Ai)k−i−1

(k − i − 1)!
] for k ≥ 2

(5)
R1 = eA − 1 and A is the load factor. From

∑K
j=0 Pj =

1, we have, the blocking probability P0 = 1
1+

∑
K
j=1 Rj

and

normalized throughput T = 1 − P0. The effect of optimally
partitioning buffers is observed in Figure 3.

C. FDMA with Channel Outage

Consider a frequency division multiple access (FDMA)
multi-user downlink. There are N users, and a frequency band
will be allocated to each user. Each frequency band exhibits
outage at random times, that is, the SNR dips below a level that
can support the (fixed) code rate being used. On every channel,
the outage periods are i.i.d. across time, and the starting times
of outage events form a renewal process. The probability of
outage depends on the frequency band used, and not on which
user is using this channel3.

(0,1) (1,1) (2,1)

(0,0) (1,0) (2,0)

(K,1)

(K,0)

λλλλ

μμμμ

αααα
ββββ

λλλλ

Fig. 4. State transition diagram for joint channel and queue states. Channel
is either on or off and queue states are allowed up to allocated buffer K.

The channel outage process of each user is assumed to be a
continuous time Markov chain with rate of transitions α and β

3The channel statistics not depending on user (and hence receiver location)
may correspond, for example, to the case when the receivers are geographi-
cally clustered far away from the base station.

for on to off and off to on transitions respectively. For channel
i we have,

pout
i =

βi

αi + βi

(6)

Various settings for α and β model various rates of channel
variation with respect to arrival rate. The case where α, β <<
λ, μ, modeling a channel variation timescale much slower than
arrivals, is particularly interesting, because in the limit α → 0,
β → 0 (α/β being constant), a closed-form expression can be
written for long term-average drop rate. In this extreme case,
both outage durations and the periods between two outages
are long enough for sufficiently many packet arrivals and
services such that the queue reaches steady-state. Since the
queue reaches steady-state in both outage and non-outage, each
user’s queue behaves like an M/M/1/mi queue during non-
outage, and is full (contains exactly mi packets) during outage.
Specifically, let queue i be served in frequency band i, whose
outage probability is pout

i . In this regime, the queue is full at
steady state in outage, so the stationary probability of drop in
outage is 1. In the non-outage case the packet drop probability
is Pd(ρ,m). The overall long term average drop rate for user
i is then:

P avg
di

(λ, pout
i ,mi) = (1 − pout

i)Pdi
(λ,mi) + pout

i (7)

Correspondingly, the long-term average throughput is:

T (λ, pout,m) = λ[1 − P avg
d (λ, pout,m)] (8)

= (1 − pout)λ[1 − Pd(λ,m)] (9)

The algorithm to find optimal buffer allocation can be
applied with a slight modification in this case.

ΔT out
i (mi, p

out
i) = (1−pout

i)λi[Pd(λi,mi)−Pd(λi,mi +1)]
(10)

Under these assumptions, the introduction of outage channel
to the problem brings forth a new dimension in terms of
optimization: assigning the channels to users for optimal total
throughput. Channels with outage probabilities p1, p2, . . . , pN

are matched to the users in a one-to-one fashion.

Problem 2: Given λi and available channels’ outage prob-
abilities pi, maximize

∑
i(1 − pπ(i))Ti(λi,mi) subject to∑

i mi = M and mi ≥ 1 and π is any permutation of
i = 1, 2, ..., N .

We shall reach the solution of Problem 2 in Theorem 3,
which will show that the problems of buffer allocation and
channel assignment are separable in our outage formulation:
The optimal solution is a best-channel highest-arrival rate
allocation, i.e., channel assignment is based on arrival rate
but not on queue (buffer) state. We start by noticing that the
throughput functions are “monotone inverse disuniting”.

Two monotone positive real functions are monotone disunit-
ing if their difference diverges to infinity. Note that monotone

functions have well-defined inverse functions. In our analysis,
we will use the same idea for inverses and we introduce
monotone inverse disuniting functions.

Definition 1: Monotone Inverse Disuniting Functions
The pair of functions f1 and f2 are said to be monotone inverse
disuniting if

1) f1 : 	+ → I1 and f2 : 	+ → I2, I1, I2 ⊂ 	+ are
monotone increasing with f1(x) > f2(x) ∀x ∈ 	+.

2) ∀y1, y2 ∈ I1 ∩ I2 , y1 > y2 ⇒
(f−1

2 (y1) − f−1
1 (y1)) > (f−1

2 (y2) − f−1
1 (y2))

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f
1

f
2

y1

y2

Fig. 5. Monotone Inverse Disuniting Functions. The difference increases as
y is increased

The following theorem is useful in finding the jointly
optimal resource allocation.

Theorem 2: Let M be a positive constant and

S � {(x1, x2) : x1 + x2 ≤ M,x1 ≥ 1, x2 ≥ 1}

If f1, f2 are monotone inverse disuniting and α1 > α2 > 0,

max
x∈S

{α1f1(x1) + α2f2(x2)} > max
x∈S

{α1f2(x2) + α2f1(x1)}

Proof of Theorem 2 can be found in the Appendix. Note
that this theorem is valid if the arguments of functions f1 and
f2 are assumed real numbers, though they are integers in the
problem. However, the argument in the proof is almost always
true for the integer case also (see Appendix).

Corollary 1: For α1 > α2 > ... > αK > 0, and (fi, fj)
∀i < j are monotone inverse disuniting, permutation π∗ that
solves the joint optimization problem

max
π,x∈S

απ(i)fi(xi)

is the identity permutation π∗(i) = i

Proof: Assume another permutation π′(i) �= i solves the
joint optimization problem. There exists at least two indices
i1, i2 such that i1 < i2 and π′(i1) > π′(i2) so that απ′(i1) <
απ′(i2). If above theorem is applied to these two indices, it is
deduced that another permutation π

′′

with π
′′

(i1) = π′(i2) and

π
′′

(i2) = π′(i1) yields better, which is a contradiction. Hence,
the identity permutation π∗(i) = i yields the joint optimal.

Lemma 1: For λ1 > λ2, let fi(m) = T (λi,m) i = 1, 2
as in Eqn 8. f1 and f2 are monotone inverse disuniting with
f1(m) > f2(m) ∀m ∈ 	+.

Proof of Lemma 1 can be found in the Appendix.

Theorem 3: Suppose λ1 > λ2 > ... > λK and pout
1 ≤

pout
2 ≤ ... ≤ pout

K . Optimal channel allocation that solves
Problem 2 is π∗(i) = i.

Proof: The result immediately follows from Theorem 2 and
Lemma 1.

It is of interest whether the separation of the channel-aware
scheduling and buffer partitioning can be carried on to more
general multiplexers.

D. User Selection and Multiplexing in a Time-Varying Chan-
nel

Now, we generalize our service model to cover the al-
location mechanism of Case 2 in the Introduction. Here,
rather than having parallel channels, the transmitter allows
the transmission of packets of a proper subset of users at
each time. Hence, there is a scheduling decision that needs to
be made: which user/users to select at each time to transmit
the data of. In greatest generality, this scheduling decision
could be a function of all that is known: instantaneous channel
states and time-average channel coding rates available to each
user, as well as the instantaneous queue states and long term
packet arrival rates of each user. We will restrict attention to
schedulers that are informed of arrival rates and instantaneous
channel states. Specifically, we shall consider the following
type of policy: the scheduling decision is made based only on
channel state (without respect to queue state). The queues are
handled by a buffer partitioning policy. The buffer partitions
are calculated as a function of average arrival rates, and the
long-term average transmission rates (note that the average
transmission rates are a function of the scheduling policy.)

Our ultimate goal is to understand whether the scheduling
and buffer management problems are separable. Toward that
goal, we first explore the issue on the simplest possible
problem. In the following, we describe and explore this “toy
problem”. Then, the more general problem will be considered.

1) Toy problem: two-users with on/off channels: Consider
the model depicted in Figure 6. There is a single-user trans-
mitter, shared by two users. Packet arrival streams of the two
users are Poisson with rates λ1 and λ2. W.l.o.g, let λ1 > λ2.
Packet sizes are i.i.d., exponential with mean 1 unit. At any
time, the channel states of the two users are independently

”on” with probability po and ”off” with probability 1 − po

(symmetric channels).

There is a scheduler that controls which user will access
the transmitter. The scheduler works as follows: during epochs
that only one of the channels is ”on”, the corresponding user
is selected for transmission, and its data will be transmitted
(at unit rate.) When both channels are ”on”, user 1 will be
selected with probability a, and user 2 will be selected for
transmission with probability 1 − a. As in the outage model
of subsection III-C, we assume that channel change is slow
so that scheduling epochs will be long enough (with respect
to packet transmission) for the queues to reach steady-state in
each epoch. Hence, whenever a user i is selected, its buffer
size evolves as an M/M/1/mi queue, where mi is the buffer
partition assigned to it. The question we want to answer is the
joint optimization of mi and a, and whether the optimization
of one depends on the other, in this very simple setup.

The long term average fraction of time each user is effec-
tively in outage is given by:

pout
1 = (1 − po) + (1 − a)p2

o (11)

pout
2 = (1 − po) + ap2

o (12)

Single−User

Transmitter

Scheduler

Channel

Drops
Packet

A(t) A(t)
1 2

Partitioned Buffer

Fig. 6. The model for two user joint buffer management and user scheduling
in a time-varying channel

Then long term throughput of user i is:

T (λi,mi, a) = (1 − pout
i)λi

(
1 −

λmi

i (1 − λi)

1 − λmi+1
i

)
(13)

We now proceed to apply the M/M/1/m optimal parti-
tioning results to find the buffer allocation and state the joint
buffer allocation-scheduling problem as follows:

Problem 3:

max T1(λ1,m1, a) + T2(λ2,m2, a) (14)

subject to

m1,m2 ≥ 1, m1 + m2 ≤ B, 0 ≤ a ≤ 1

Interestingly, the partitioning and channel allocation prob-
lems turn out to be separable. We summarize the optimal
policy in the following theorem:

Theorem 4: Let (a∗,m∗

1,m
∗

2) be a solution of Problem 3.
The following are true: (1) If λ1 = λ2, then a∗ = 0.5, and
if λ1 > λ2, then a∗ = 1. (2)(m∗

1,m
∗

2) are found by running

algorithm OP with the throughput functions stated above.

Proof: If λ1 = λ2, then by symmetry, a = 1/2.
Let λ1 > λ2. First, by the previous separation theo-
rem, it is clear that a > 1/2. The proof is based on
the fact that ∂

∂a
[T1(λ1,m

∗

1(a), a) + T2(λ2,m
∗

2(a), a)] >
0 where m∗

1(a) and m∗

2(a) are the optimizing buffer al-
locations for fixed a > 1/2. More precisely, let a
be fixed and m∗

i (a) be the corresponding buffer allo-
cation. Since ∂

∂a
[T1(λ1,m

∗

1(a), a) + T2(λ2,m
∗

2(a), a)] =
p2
0 (f1(m

∗

1) − f2(m
∗

2)) where f1 and f2 are monotone inverse
disuniting functions as discussed in Theorem 3. An implicit
result of Theorem 2 is that f1(m

∗

1) > f2(m
∗

2) because other-
wise it would be possible to obtain better total throughput by
assigning worst channel to the higher rate user. In conclusion,
for fixed buffer allocation, it is possible to increase total
throughput by incrementally increasing a. Since this result is
true for all a and corresponding optimal buffer allocations,
then the optimizing value of a must be 1.

It will be interesting to compare this policy with benchmark
queue-aware scheduling algorithm MaxWeight(MW). In this
setting, MW reduces to selecting the user with longest queue
when channels of both users are “on”. Figs. 7 and 8 depict the
comparison of the proposed policy and MW: we see that the
performance of the simple scheduler with optimal partitioning
is very close to MaxWeight with equal partitioning. Here, the
significance of partitioning to throughput is exhibited clearly:
MW with CS has a throughput that falls with increasing load.
This is due to “hogging” of the buffer by the first user.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

The Proposed Joint Policy
Equal Partition + MaxWeight
Complete Sharing + MaxWeight

Load of User 1

To
ta

l
T

hr
ou

gh
pu

t

Fig. 7. Performance comparison of the proposed joint policy and policies
with MW scheduling. B=5 buffers per user, Po = 0.3 and λ2 = 0.1.

2) The General Case: Now, a more general multiuser
wireless downlink model similar to polling. Selection of user
is based on channel state and the scheduling is performed at
the end of service of a packet. Packet lengths are assumed
constant. The achievable rate of any user is drawn from the
same distribution, independently. Let this rate be R. The
random variable R ∈ {1, 2, . . . , rmax} is described by some
probability mass function pR(r). We will assume that users
have symmetric channels; more explicitly, their channel gains
hi(t) are independent memoryless random processes with the

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

The Proposed Joint Policy
MW + Equal Part.
MW + CS

Load of User 1

To
ta

l
T

hr
ou

gh
pu

t

Fig. 8. Performance comparison of the proposed joint policy and policies
with MW scheduling. B=5 buffers per user. Po = 0.5. λ2 = 0.4.

same statistics. Accordingly, if the packet of user i has been
selected for service, the service time of a packet will be
1/Ri where Ri has the same distribution as R: Ri ∼ R.
Scheduling is performed at the same instant as the service of
previous packet is finished and the user with maximum rate is
selected. Since channels vary independently, scheduling times
are IID. As arrivals are Poisson, the individual user packet
queues can be viewed as M/G/1/mi systems. We will use
Gelenbe’s approximate expression [21] for M/G/1/mi packet
drop probability Pd.

Pd(λ, μ,m) =
λ(μ − λ)e

−2
(μ−λ)(m−1)

λ+μs2

μ2 − λ2e
−2

(μ−λ)(m−1)

λ+μs2

(15)

where s = V ar(Ts)
E(Ts)2 . Throughput can be expressed in terms of

Pd as follows:

T (λ, μ,m) = λ(1 − Pd(λ, μ,m)) (16)

It can be verified that throughput in (16) is monotone increas-
ing and concave with respect to λ and m. Hence, the incre-
mental buffer allocation algorithm also solves the throughput
maximization problem here.

E. Comparison of Queue-Aware and Queue-Blind Policies

In this section, we will compare throughput performances
of several joint buffer management and scheduling policies by
means of simulations. In particular, queue aware and queue
blind scheduling with and without buffer partitioning will be
compared in a multiple state wireless downlink channel.

Simulated user scheduling mechanisms are MaxWeight
(MW), Max. Channel (MC) and Time Division Multiplexing
(TDM). MW scheduling calculates the product of backlog and
rate at each slot and selects the user that has the maximum
of the products. Note that MW scheduler relies on cross layer
operation of link layer and physical layer as it necessitates
instantaneous backlog and channel state information. MC
selects the user that has the best rate. Due to discrete nature
of the rates, there may be ties, i.e. best rate can be achieved

by more than one user. We assume that the scheduler has the
information of arrival rate λ and the user with higher λ is
selected in case of ties. This way, MC scheduler does not
process the instantaneous backlog information but rather first
order statistic of the arrival process, which makes operation
of MC less complex than MW. TDM scheduling, the simplest
of the three, is basically the round robin scheduling of users.
As buffer management policies, complete sharing (CS), equal
partitioning (EP) and optimal partitioning (OP) schemes are
considered. CS policy allows each user to be accommodated
if there is an available space. On the other hand, EP reserves
equal buffer spaces for each user. OP policy is the one
proposed in Section II with Gelenbe’s expression used in the
packet drop probability. The service rate and second order
statistic of the service process is assumed to be known to the
buffer manager.

One may argue that the proposed scheduling and buffer par-
titioning assumptions rely mainly on the idealistic assumption
of Poisson arrivals. In the simulations, we will also examine
the performance of the joint policies for bursty arrivals.

1) Simulation Setting and Results: Wireless channel of
users is modeled as four-state independent discrete random
variables. In each state, a rate is achievable. Assuming fixed
length packets, we normalize the rate with packet length.
For channel state i, i packets can be sent in each slot, i ∈
{0, 1, 2, 3}.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2.0 2.2
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

MW + EP
MC + OP
MC + EP
MW + CS
MC + CS
TDM + CS
TDM + CS

Load of User 1

To
ta

l
T

hr
ou

gh
pu

t

Fig. 9. N=2 and B=5 buffers per user. ρ2 = 0.3. MC-OP performs quite
close to MW.

We simulated several joint buffer management and user
scheduling policies and compared their total throughput and
average packet drop probability performances using MAT-
LAB. In each experiment, 106 packet service time in the
slowest rate are simulated. Operation is not slotted. Arriving
packets are accepted if the management policy allows and
the scheduling is done at the end of service of each packet.
Since the channel states of users vary independently, the rate
allocated to a packet is independent from those of other
packets.

Firstly simulated is a 2 user system with λ2 fixed and λ1

is varied. Channel service capacity is μ = 0.35 pkts/slot/user.
Total throughput for different policies are depicted in Figs. 9
and 10. Loads and throughput are normalized according to μ.
ρ2 = 0.3 in Fig. 9 and ρ2 = 0.6 in Fig. 10. The multiuser
diversity gain is observed when TDM and MC scheduling
are compared. Throughput of MW scheduling with CS or EP
is observed to outperform the others but the MC scheduling
with OP performs quite close to MW. CS policy in each
scheduling has decreasing throughput after some load level
though partitioning retains its performance.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

MW + EP
MC + OP
MW + CS
MC + CS
TDM + CS
TDM + EP
MC + EP

Load of User 1

To
ta

l
T

hr
ou

gh
pu

t

Fig. 10. N=2 and B=5 buffers per user. Load of user 1 is changing in the
x-axis while ρ2 = 0.5

Next, we experiment the joint policies in a 5 user downlink
with unbalanced loads. The results are shown in Fig. 11. MW
scheduling clearly outperforms the others. MC + OP policy
comes after the MW. The advantage of optimal partitioning is
observed.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.5

1

1.5

2

2.5

3

3.5

4

Load of User 1

To
ta

l
T

hr
ou

gh
pu

t

Fig. 11. N=5 and B=5 buffer per user. A realistic unbalanced load regime:
x-axis represents load of user 1 and ρ2 = 0.2 ρ3 = 0.8, ρ4 = 0.3, ρ5 = 0.9

In the last experiment, we examine the performance of the
policies under bursty arrivals though we use the formulas for
Poisson arrival. In particular, Markovian Modulated Poisson
Arrivals (MMPA) are assumed. Total throughput and packet
drop probability of the joint policies are shown in Fig. 12.
Similar trends are observed as the Poisson case. Finally,
as expected, CS policies enter the hogging regime (where
throughput starts its downward slope) sooner as arrivals get

burstier.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

MW + EP
MC + OP
MC + EP
MW + CS
MC + CS
TDM + CS
TDM + EP

Load of User 1

To
ta

l
T

hr
ou

gh
pu

t

Fig. 12. The performance of buffer partitioning under MMPA with modu-
lating Markov chain transition probabilities equal to 0.5. Arrival rate is 0.2λ
and 1.8λ according to the state of the Markov chain. ρ2 = 0.3

IV. CONCLUSION

In this paper, we examined buffer partitioning as a buffer
management method, and its possible use in enhancing the
use of a multiple-user wireless channel. Partitioning buffers
for unbalanced load according to the arrival and service
statistics came out as an effective method to boost through-
put performance. We exhibited a polynomial-time iterative
algorithm for finding optimal partitions, and adapted it for
various scenarios. We showed the separability of the optimal
buffer partitioning and user scheduling or channel assignment
problems under several simple models. It was numerically
observed that using first order statistic of the arrival process
along with buffer partitioning can provide good performance
improvement. These results encourage further study of optimal
scheduling and buffer management in more realistic system
models.

V. APPENDIX

A. Proof of Theorem 2

Proof: Let Z = maxx∈S{α1f2(x2) + α2f1(x1)}, x∗ =
(x∗

1, x
∗

2) = arg maxx∈S{α1f2(x2) + α2f1(x1)}. It is enough
to show that there exists some (x∗∗

1 , x∗∗

2) ∈ S such that
α1f1(x

∗∗

1) + α2f2(x
∗∗

2) > Z. To show this, we will consider
two cases:

1: Assume f1(x
∗

1) ≥ f2(x
∗

2). Then setting x∗∗

1 = x∗

1 and x∗∗

2 =
x∗

2 and exchanging the channels, α1f1(x
∗∗

1)+α2f2(x
∗∗

2) > Z.

2:Assume now f1(x
∗

1) < f2(x
∗

2). Let’s exchange the channels
and define x∗∗∗

1 = f−1
1 (f2(x

∗

2)) and x∗∗∗

2 = f−1
2 (f1(x

∗

1)).
Note that by definition we have α1f1(x

∗∗∗

1) + α2f2(x
∗∗∗

2) =
Z. The same throughput is achieved with total buffer
X∗∗∗ = f−1

1 (f2(x
∗

2)) + f−1
2 (f1(x

∗

1)). In the previous allo-
cation, total buffer was X∗ = x∗

1 + x∗

2 = f−1
1 (f1(x

∗

1)) +

f−1
2 (f2(x

∗

2)). Because of the monotone disuniting prop-
erty (and for f1(x

∗

1) < f2(x
∗

2)), we have f−1
2 (f2(x

∗

2)) −
f−1
1 (f2(x

∗

2)) > f−1
2 (f1(x

∗

1)) − f−1
1 (f1(x

∗

1)). After rearrang-
ing we get, f−1

2 (f2(x
∗

2)) + f−1
1 (f1(x

∗

1)) > f−1
2 (f1(x

∗

1)) +
f−1
1 (f2(x

∗

2)). This means that X∗∗∗ < X∗. The same through-
put is achieved with smaller buffer memory. Hence, there
exists some allocation (x∗∗

1 , x∗∗

2) ∈ S such that α1f1(x
∗∗

1) +
α2f2(x

∗∗

2) > Z.

Now, assume arguments of f1 and f2 are restricted to
integers. We can let the optimization be performed over
integers. Then, the steps in the proof can be applied the same
way in general. But there is an exceptional case in which
monotone inverse disuniting property may not be sufficient.
Let f−1

1 (f2(x
∗

2)) = I1 + d1 and f−1
2 (f1(x

∗

1)) = I2 + d2 such
that Ii and di for i = 1, 2 are integer and fractional parts of the
corresponding numbers. If d1 < 0.5, d2 > 0.5, I1+I2 = B−1
and d1 + d2 < 1, then a resource of amount 1 − (d1 + d2) is
available but integer arguments can not be obtained by adding
that amount. So, one has to decrease one of the arguments and
increase the other. Adding the remaining fractional resource
by decreasing one of the arguments and increasing the other
may not yield better total throughput.

B. Proof of Lemma 1

Proof: The derivative w.r.t. m is −ρm+1(1−ρ) ln ρ

(1−ρm+1)2 , which is

always positive. The derivative w.r.t. ρ is 1+mρm+1
−(m+1)ρm

(1−ρm+1)2 ,
which is also greater than zero (The nominator of the deriva-
tive is a convex function with minimum of zero). Therefore
the first condition is satisfied.

As for the second condition, after some rearrangement, we

get f−1
i (y) =

ln
(

ρi−y

ρi(1−y)

)
ln ρi

. Let’s define F21(y) = f−1
2 (y) −

f−1
1 (y).

F21(y) =
ln

(
ρ2−y

ρ2(1−y)

)
ln ρ2

−
ln

(
ρ1−y

ρ1(1−y)

)
ln ρ1

(17)

F ′

21(y) = (
1

ρ1 − y
)

1

ln ρ1
− (

1

1 − y
)

1

ln ρ1

− (
1

ρ2 − y
)

1

ln ρ2
+ (

1

1 − y
)

1

ln ρ2
(18)

Collecting common terms once more, we get,

F ′

21(y) =
1

ln ρ2

(
ρ2 − 1

(ρ2 − y)(1 − y)

)

+
1

ln ρ1

(
ρ1 − 1

(ρ1 − y)(1 − y)

)
(19)

We know that y < 1 and y < ρ1, ρ2, therefore we need to
check for the positivity of the terms ρi−1

ln ρi
, i = 1, 2. For both

of the cases ρi > 1 and ρi < 1, it is positive therefore the
inverse difference function F21(y) is increasing in y. Hence,

the pair of functions are monotone inverse disuniting.

Acknowledgment: The material in this paper is based upon
work supported by TUBITAK under Kariyer grant 106E119
and NSF under grant CCF-0635242.

REFERENCES

[1] M. I. Irland, “Buffer management in packet switch,” IEEE Transactions
on Communications, vol. COM-26, pp. 328–337, March 1978.

[2] F. Kamoun and L. Kleinrock, “Analysis of shared finite storage in a
computer network node environment under general traffic conditions,”
IEEE Trans. Commun, vol. 28, pp. 992–1003, July 1980.

[3] P. Viswanath, D. Tse, and R. Laroia, “Opportunistic beamforming using
dumb antennas,” IEEE Transactions on Information Theory, vol. 48,
June 2002.

[4] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Transactions on
Information Theory, vol. 39, pp. 466–478, 1993.

[5] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space Time Wire-
less Communications. New York, USA: Cambridge University Press,
first ed., 2003.

[6] H. Kim, C. Han, and I. Kang, “Reducing tcp response time in face of
wireless uplink losses,” in Vehicular Technology Conference, 2001. VTC
2001 Fall. IEEE VTS 54th, vol. 1, pp. 262–266 vol.1, 2001.

[7] D. J. Leith, L. L. H. Andrew, T. Quetchenbach, R. N.
Shorten, and K. Lavi, “Experimental evaluation of delay/loss
based TCP congestion control algorithms,” in [Online],
http : //www.hamilton.ie/net/delaytestsf inal.pdf .

[8] S. Sarkar, “Optimum scheduling and memory management in input
queued switches with finite buffer space,” IEEE Transactions on In-
formation Theory, vol. 50, pp. 3197–3220, Dec. 2004.

[9] E. Yeh and A. Cohen, “Throughput and delay optimal resource allocation
in multiaccess fading channels,” Information Theory, 2003. Proceedings.
IEEE International Symposium on, pp. 245–245, June-4 July 2003.

[10] G. Foschini and B. Gopinath, “Sharing memory optimally,” IEEE
Transactions on Communications, vol. 31, pp. 352–360, March 1983.

[11] S. Krishnan, A. Choudhury, and F. Chiussi, “Dynamic partitioning:
a mechanism for shared memory management,” in INFOCOM ’99.
Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, vol. 1, pp. 144–152 vol.1,
Mar 1999.

[12] L. L. H. Andrew, S. V. Hanly, and R. G. Mukhtar, “Active queue
management for fair resource allocation in wireless networks,” IEEE
Transactions on Mobile Computing, vol. 7, pp. 231–246, February 2008.

[13] I. Cidon, L. Georgiadis, R. Guerin, and A. Kamisy, “Optimal buffer
sharing,” IEEE Journal on Selected Areas in Communications, vol. 13,
pp. 1229–1240, September 1995.

[14] G.-L. Wu and J. Mark, “A buffer allocation scheme for atm networks:
complete sharing based on virtual partition,” IEEE/ACM Transactions
on Networking, vol. 3, pp. 660–670, Dec 1995.

[15] S. Ziya, “On the relationships among traffic load, capacity, and through-
put for the m/m/1/m, m/g/1/m-ps, and m/g/c/c queues,” IEEE Transac-
tions on Automatic Control, vol. 53, pp. 2696–2701, Dec. 2008.

[16] E. Altman and A. Jean-Marrie, “The loss process of messages in an
M/M/1/K queue,” Proceedings of INFOCOM 94. Networking for Global
Communications, pp. 1191–1198, 1994.

[17] J. M. Einbu, “On shih’s incremental method in resource allocations,” Op-
erations Research Quarterly(1970-1977), vol. 28, no. 2-Part-2, pp. 459–
462, 1977.

[18] W. Shih, “A new application of incremental analysis in resource alloca-
tions,” Operations Research, vol. 25, pp. 587–597, December 1974.

[19] T. I. N. Katoh and H. Mine, “A polynomial time algorithm for the re-
source allocation problem with a convex objective function,” Operations
Research, vol. 30, pp. 449–455, May 1979.

[20] R. G. Gallager, Discrete Stochastic Processes.
Boston/Dordrecht/London: Kluwer Academic Publishers, 1996.

[21] G. Li and H. Liu, “Dynamic resource allocation with finite buffer
constraint in broadband ofdma networks,” in Proc. IEEE Wireless Com-
munications and Networking Conference(WCNC) ’03, vol. 2, pp. 1037–
1042, March 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

