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Abstract—Inspired by recent industry efforts toward provid-
ing Internet access to areas of the world devoid of regular
telecommunications infrastructure, an online resource allocation
problem for a mobile access point (AP) is studied. While
prudently managing its available energy, the AP allocates its
resources to maximize the total utility (reward) provided to
the users demanding service. The problem is formulated as a
0/1 dynamic knapsack problem with incremental capacity in a
finite time horizon, the solution of which is quite open in the
literature. The problem is approached from through stochastic
and deterministic formulations. For the stochastic case, using
a dynamic programming setup, the optimality of a threshold
based solution is exhibited, and a simple threshold based policy
which performs closely to optimal is obtained via the expected
threshold method. For the deterministic formulation, several
online heuristics based on an instantaneous threshold that can
adapt to short-time-scale dynamics are proposed, including one
with an optimal competitive ratio under a certain condition. The
performance of all heuristics are comparatively studied.

I. INTRODUCTION

This paper considers a case of exploiting renewable energy

to power a mobile Internet router. We define an Access Point

on the Move (APOM) as a flying platform (e.g., situated in

the lower stratosphere) powered by solar energy providing

service to users in different locations on its path. The APOM

resource allocation problem considered in this paper has

been motivated by recent industrial efforts toward providing

ubiquitous Internet access by launching mobile Internet service

providers (ISP) in the Earth’s atmosphere [1].

We concern ourselves with the following resource alloca-

tion problem: As the APOM moves over a certain area and

observes various user demands, and given an energy budget

that is occasionally but arbitrarily replenished, which demands

should it serve to maximize an overall utility.

A. Related Work

Mobile service providers have certain advantages over fixed

ones [2]. Various studies exist regarding mobile sinks in

conventional networks that do not expoit renewable energy

[3], [2]. Some of these studies focused on determining optimal

paths in order to prolong network lifetime [4], [5].

In recent years, employing energy harvesting (via ambient

energy sources such as solar irradiation [6], and vibrations

[7]) to power transmitters of network devices such as APs has

been drawing great attention from the research community.

The consideration of mobile access points with energy harvest

capability is relatively new. Several of the recent studies on

the topic are concerned with finding optimal routing paths

[8]. Xie et al. [9] address the problem of colocating the

mobile service provider on the wireless charging machine with

the objective of minimizing energy consumption. The closely

related works of Ren and Liang [10] considered a distributed

time allocation method to maximize data collection in energy

harvesting sensor networks while defining a scenario of a

constrained path with all sensors having renewable energy

sources.

Kashef et. al. [11] consider binary decision problem to

transmit or defer several tasks according to a stochastic model

based on Gilbert-Elliot channel and prove that a threshold

based approach is optimal. Similar works as [12], [13], also

consider threshold based solutions for the resource allocation

problem in energy harvesting systems for stochastic models.

In recent work [14], [15] resource allocation at solar powered

stationary and mobile service providers has been adressed

through various different optimization techniques.

The problem at hand can be set up as a 0/1 dynamic online

Knapsack problem. While the Knapsack problem is a well

known combinatorial optimization problem [16], competitive

online solutions are limited. Chakrabarty et. al. proposes a

constant competitive solution to the problem with static and

large capacity [17]. The dynamic capacity case, which applies

to the setup in this paper, is largely open.

B. Our Contribution

This paper studies a mobile access point powered through

(solar) energy harvesting, which aims to maximize the total

data service it provides to users appearing to it in a sequential

manner. One difference of the approach from related studies is

that the problem is cast as an online user admission problem

under deterministic as well as stochastic models for the user

(demand) population.

The resource allocation problem is mapped to a multi

constraint 0/1 knapsack problem (KP). After exhibiting the ex-

istence of a threshold based optimal policy, scalable and com-

putationally cost effective heuristics are proposed. The per-

formance of these heuristics are studied numerically (through

simulations) and competitive ratio analyses are conducted.

In the resource allocation literature, there are a number

of studies implementing the optimization tools proposed here

such as genetic algorithms and rule-based logic, but to our

knowledge this is the first application of these techniques

to a threshold based user selection problem. Furthermore,

our schemes constitute a fairly competitive solution to the
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Fig. 1. System Model of APOM

dynamic knapsack problem with incremental capacity, optimal

competitive ratios for which are currently not available.

C. Organization of the paper

The system model and the setup of the optimal decision

problem of which users to serve is defined as a generalized

version of a 0/1 knapsack problem in Section II. Next, the

stochastic version of the problem is examined in detail and

several approaches providing both optimal and suboptimal

solutions are proposed in Section III. After exhibiting an

optimal algorithm and the existence of a threshold for the

stochastic model, the problem is investigated for a determinis-

tic model where several novel optimization tools are employed

to propose threshold based heuristic solutions to the resource

allocation problem in Section IV. Detailed numerical and

simulation results are presented in Section V. The paper is

concluded with an outline of future directions in Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider an APOM (mobile Internet access point or router)

relying on renewable energy resources (e.g. solar, wind) while

it moves on a predefined path. As it travels on its route, deci-

sions are to be made on an event-based schedule where each

user request represents the start of a slot. We consider a finite

horizon problem with N slots and N (distinct) corresponding

users.

The sequential user arrival model has been motivated by

the following. Operating on remote areas, it is envisioned

that users with transceivers that can communicate with the

APOM are distributed over a large geographical area. Thus,

by the time a new user appears, the service of the previous

one is complete. As every energy replenishment will constitute

a change the service capacity of APOM, the problem will

be examined in J subintervals regarding J harvest instances

as depicted in Figure 1. Each user will be represented by a

value and weight pair: (vn, wn) for the nth user, independently

from any specific channel presumption. The value of a user

corresponds to the utility gained by serving a user whereas

the weight corresponds to the power consumption required to

serve it. APOM makes a binary decision at each slot, whether

to serve the encountered user or not. Once a decision on a

user has been made, there will be no re-evaluation on the

same user. In the case of interest where energy replenishment

rate cannot meet the power needed to serve all users, APOM

has to (in an online fashion) has to pick a proper subset of

users to maximize total utility under energy constraints.

In the following sections online heuristics and policies are

proposed over system models constructed upon both deter-

ministic and stochastic threshold based schemes considering

user characteristics and energy harvests. For the deterministic

problem formulation, following a widely adopted assumption

about energy replenishment, the amount of harvested energy

in certain time periods are presumed to be non-deterministic

but predictable [6]. However, over a stochastic problem for-

mulation, energy scavenging is modelled as an IID random

process using the similar assumptions in [11], [14].

Both deterministic and stochastic approaches for this system

setup bring discrete power levels and utilities, which is also

consistent with practical concerns. Following knapsack termi-

nology, APOM is characterized by its capacity to serve, which

corresponds to the amount of energy stored in its battery.

The main aim is to collect the maximum value over N users

while ensuring that total weight does not exceed the service

capacity. Stated this way, the problem is an online knapsack

problem. However, in accordance with energy harvesting, we

allow capacity replenishment that results in an extension of

knapsack problem with dynamic incremental capacity.

Problem 1. Service policy optimization: deterministic model

Maximize:

N∑

n=1

vnxn (1)

subject to:

N1∑

n=1

wnxn ≤ B1, (2)

N2∑

n=1

wnxn ≤ B1 +B2, ...,

NJ∑

n=1

wnxn ≤

J∑

j=1

Bj (3)

xn ∈ 0, 1 (4)

There is no presumed probabilistic model on user arrivals or

types in deterministic setup in Problem 1, that is each users is

associated with (vn, wn) pair. On the other hand, considering

the stochastic model, demand and utility of encountered users

are modelled as discrete random variables. Thus the maximiza-

tion is calculated over an expectation of total value till the end

of finite horizon N . There are assumed to be K types of users

appearing with probability p(k) such that
∑K

k=1 p(k) = 1 in

this model. Each is associated with a utility (vn(k)) and energy

demand (wn(k)) appearing at each slot n. Then, the objective

of the APOM is to achieve a maximum expected utility under

energy causality constraints as given in Problem 2.



Problem 2. Service policy optimization: stochastic model

Maximize: E

(
NJ∑

n=1

vnxn

)
(5)

subject to:

N1∑

n=1

wnxn ≤ B1,

N2∑

n=1

wnxn ≤ B1 +B2, ...,

NJ∑

n=1

wnxn ≤
J∑

j=1

Bj (6)

xn ∈ {0, 1} (7)

At the beginning of the problem horizon, there is a certain

amount of energy stored in the battery. Energy is replenished

(with arbitrary amounts) right after slots n = N1, N2, . . .NJ .

The problem is stated in terms of the decision variables {xn ∈
0, 1,, n = 1, 2, . . . , N}’s, which indicate the decision to either

serve the nth user (xn = 1) or pass it up (xn = 0) .

III. OPTIMIZING THE SERVICE POLICY OF APOM

THROUGH A STOCHASTIC KNAPSACK PROBLEM

FORMULATION

A. Optimal Online Policy via Dynamic Programming

For the following analysis, a state for the nth user is to be

defined in terms of the available energy e = [1, ..., E] and user

type k. Let the action taken for nth user be xn = {0, 1} where

xn = 1 means ”transmit” and xn = 0 means ”defer”. Action

space over N slots is {0, 1}N . Energy arrivals {Qn ∈ {0, 1}}
are modelled as an IID random sequence indexed by n. In

each slot, the probability of a user of type k, k ∈ {1, . . .K}
is 1/K , independently of all other slots, the value of a user of

type k being v(k) and the costs are unity, w(k) = 1, without

loss of all generality.

V (e, k, n) denotes the expected total value from slot n
starting with energy level e and user type k till the end of time

horizon N , that is, V (e, k, n) = E(
∑N

i=n Vixi). A Dynamic

Programming (DP) equation can be written to maximize this

value, starting with:

V ∗(e, k,N) = v(k), ∀e ≥ 1 (8)

For a current user n, the expectation of the total value (till

the end of the horizon), after choosing to transmit to the cur-

rent user, is denoted as V1(e, k, n) whereas that after choosing

denying that user is represented as V0(e, k, n). Comparing

these quantities, the optimal expected value may be stated as:

V ∗(e, k, n) = max
xn

Vxn
(e, k, n) = max{V1(e, k, n), V0(e, k, n)}

(9)

Backward induction of DP reveals a threshold based policy

where APOM adopts a conservative attitude at initial slots and

turns into a Greedy form towards the end of the horizon, N.

APOM attempts to serve users with higher utility as long as the

energy constraints are satisfied, which implies that the residual

energy of the APOM should be greater than the weight of the

corresponding user. A pseudo code of the optimal solution is

given in Algorithm 1.

Algorithm 1 DP solution to the problem for finite horizon

for e = 0 to E do

for k = 1 to K do

V (e, k,N + 1) = 0 {Initialization step}
end for

end for

for n = N to 1 do

for e = 0 to E do
for k = 1 to K do

if w(k) > e then

V (e, k, n) = E(k′,Q){V
∗(e+Q,k′, n+ 1)}

else
V (e, k, n) = max{E(k′,Q){V

∗(e + Q, k′, n + 1)}, v(k) +
E(k′,Q){V

∗(e−w(k)+Q,k′, n+1}} {Recursive equation}
end if

return V (e, k, n)
end for

end for

end for

B. Structure of the Optimal Policy

The structure of the optimal policy may be obtained based

on the DP relaxation.

1) Existence of threshold:

Lemma 1. For a given k and n, the state defined as expected

total reward Vx(e, k, n) is super-modular in available energy

and decision pair (e, x), that is, for any 0 ≤ e0 < e1 < ∞,

V1(e1, k, n) + V0(e0, k, n) ≥ V0(e1, k, n) + V1(e0, k, n) for

1 ≤ n ≤ N .

Proof. The stated super-modularity corresponds the statement:

V1(e1, k, n)− V0(e1, k, n) ≥ V1(e0, k, n)− V0(e0, k, n)
(10)

In our construction energy harvests are in increments of 1
hence there is an integer difference between e1 and e0. It

suffices to prove this statement for e1 − e0 = 1 (it can be

easily extended to higher differences by iteration of the same

argument.) Let e1 = e0 + 1 = e + 1. The equality above can

be shown to hold for 1 ≤ n ≤ N by the following argument:

V1(e, k, n)− V0(e, k, n) = v(k)

+
1

K

K∑

k′=1

q(V (e, k′, n+ 1)− V (e+ 1, k′, n+ 1))

+(1− q)(V (e − 1, k′, n+ 1)− V (e, k′, n+ 1)) (11)

and,

V1(e+ 1, k, n)− V0(e + 1, k, n) = v(k)

+
1

K

K∑

k′=1

q(V (e+ 1, k′, n+ 1)− V (e + 2, k′, n+ 1))

+(1− q)(V (e, k′, n+ 1)− V (e + 1, k′, n+ 1)) (12)

By subtracting (11) from (12), a sufficient condition for (10)



to hold ∀n ≥ 1 becomes:

V (e, k, n)− V (e− 1, k, n) ≥ V (e + 1, k, n)− V (e, k, n)
(13)

Then, the condition of (13) is proved by induction. First, the

condition is satisfied when n = 1, that is both sides of the

equation are equal to 0. Second, if it is true for some n − 1
then it also holds for n.

V (e, k, n)− V (e− 1, k, n) ≥ V (e + 1, k, n)− V (e, k, n)
(14)

We will examine the three cases corresponding 3 energy states

(e + 1, e, e − 1) and the three decisions (d1, d2, d3 ∈ {0, 1})

respectively.

Vd1(e + 1, k, n)

−Vd2(e, k, n)− (Vd2(e, k, n)− Vd3(e− 1, k, n)) ≤ 0 (15)

Vd1(e+ 1, k, n)− Vd1(e, k, n) + Vd1(e, k, n)− Vd2(e, k, n)

−(Vd2(e, k, n)− Vd3(e− 1, k, n))

−Vd3(e, k, n) + Vd3(e, k, n) ≤ 0
(16)

By optimality of d2 for energy state e, Vd1(e, k, n) −
Vd2(e, k, n) statement is already smaller and equal to 0. Same

property holds for the Vd3(e, k, n) − Vd2(e, k, n) statement.

Therefore, we should only consider the remaining terms. For

each possible case of [d1, d3] ∈ {0, 1}2, the inequality in (16)

is shown to be satisfied. For example, lets examine the case

where d1 = 1, d2 = 1:

V1(e+ 1, k, n)− V1(e, k, n)− (V1(e, k, n)− V1(e − 1, k, n))

=

K∑

k′=1

p(k)q(V (e+ 1, k, n− 1)− V (e, k, n− 1)

−V (e, k, n− 1) + V (e − 1, k, n− 1))

+(1− q)(V (e, k, n− 1)− V (e− 1, k, n− 1)

−V (e − 1, k, n− 1) + V (e − 2, k, n− 1)) ≤ 0
(17)

The above inequality holds since the difference is assumed

to be non increasing in available energy (e). Similar steps

may be followed for all combinations of d1 and d3 where

[d1, d3] ∈ {0, 1}2. Hence, the total expected reward is a super-

modular function in (d,e).

Theorem 1. The optimal policy is a threshold type policy in

the available energy at each slot n and there is a threshold η

defined as: xn(k) =

{
1 : e ≥ η(n, k)
0 : e < η(n, k)

Proof. Let {e1, e2, e3} be the available energies at three de-

cision instants such that e1 < e2 < e3. Suppose there exists

an optimal policy which chooses to transmit at energy levels

e1 and e3 while denying the user at the energy level e2. This

contradicts Lemma 1. Therefore, the crossover from ”Defer”

to ”Transmit” happens only once as e is increased (holding all

other parameters constant), i.e. there is a threshold.

2) Monotonicity of threshold:

Lemma 2. Expected total reward Vx(e, k, n) is super-modular

in slot index and decision pair (n,x), that is V1(e, k, n+ 1)+
V0(e, k, n) ≥ V0(e, k, n+ 1) + V1(e, k, n).

Proof. Following similar steps as in the proof of Lemma 1,

supermodularity corresponds to the statement:

V1(e, k, n+ 1)− V0(e, k, n+ 1) ≥ V1(e, k, n)− V0(e, k, n)
(18)

Corollary 1. The threshold function on the available energy

to serve a user, η(n, k) defined in Theorem 1 is monotonically

non-increasing with slot number n.

Proof. Let n ≥ 1 be the first slot index such that the threshold

increases from n to n+ 1. This means the policy chooses to

transmit to a user of some type k at n while denying a user

of the same type at slot n+1, for the same starting energy e.
By (18) this policy can be improved by reversing this decision

hence cannot be optimal.

C. Suboptimal Solution: Expected Threshold Policy

DP provides an optimal solution for 0/1 dynamic and

stochastic Knapsack problem with growing capacity; however

its computational complexity increases exponentially in N ,

which is consistent with the NP-hardness of the problem[18].

In this section, a computationally cost- effective suboptimal

policy called Expected Threshold Policy [19], [12] will be

adapted to this problem.

First, we define the following bound on the expectation of

energy depletion (RHS of (19)) at slot n if the available energy

is e and expected harvest amount from slot n till the end of

time horizon N is denoted as

N−1∑

m=n

E{Qm|Qn−1
1 } .

e+

N−1∑

m=n

E{Qm|Qn−1
1 } ≥

N∑

m=n+1

E{wmxm} (19)

After stating a bound on the expected energy consumption

from slot n till the end of time horizon in (19), a compu-

tationally cost effective suboptimal policy called ”Expected

Threshold” is proposed in (22) as follows:

xn(k, e) =

{
1 : e ≥ η̂
0 : e < η̂

(20)

where

η̂ =
N∑

m=n+1

E{wmxm} −
N−1∑

m=n

E{Qm|Qn−1
1 } (21)

As it can be seen from (22) and (23), APOM makes a

decision to serve a user of type k appearing in slot n if the

available energy e at slot n is greater or equal to threshold



level η. η is stated as the difference between the expected

energy consumption for users with higher value and expected

energy replenishment from slot n till the end of horizon N .

As an example, if the weights are all equal to one and

harvest process is IID then, the expected threshold policy

becomes:

xn(k) =

{
1 : e ≥ η
0 : e < η

(22)

where

η = (N − n+ 1)(
K∑

k′=k+1

pk′ − q) (23)

and users of type k ∈ {1, ...,K} are arranged such that priority

of a user (v/w) increases with increasing k.

To examine the performance of the expected threshold

policy in Section (V), two more different heuristics are also

defined as follows:

Definition 1. Greedy policy is a policy that serves an encoun-

tered user whenever there is available energy to serve it.

Definition 2. Conservative policy is a policy that serves only

the best user when there is available energy to serve it.

IV. OPTIMIZING THE SERVICE POLICY OF APOM

THROUGH A KNAPSACK PROBLEM FORMULATION OVER

DETERMINISTIC MODEL

Responding to instantaneous requests of encountered users,

APOM has to adopt an efficient and fast decision making

strategy as a new user demand appears. In such problems, if a

well defined threshold could be stated, then the threshold based

decision mechanism gives a satisfactory result in terms of

overall performance and computational complexity. Hence, we

shall mainly look for threshold based schemes which provably

exhibit experimentally strong performance.

A. An Online Policy with Deterministic Threshold Method

This section restricts attention to threshold based decision

rules, where the values and weights of the encountered users

are compared with a time-varying threshold. In addition to

time, the threshold may also be a function of the fraction of

remaining capacity in the battery. To consider the deterministic

online knapsack problem in a threshold based scheme, upper

and lower bounds on the user rate, energy requirement and

energy harvesting will be assumed, which are not unrealistic

considering practical correspondents to these limitations exist.

The value/weight cost efficiency (v/w), will be the critical

decision metric for each user. The instantaneous threshold

is defined as a monotonic increasing function of zn =∑
n

m=1 xmwm

B
, the fraction of the capacity used up by the nth

slot. Following [17], where an optimal threshold scheme was

developed for the static capacity 0/1 KP, we restrict attention

to the case where the value/weight values are upper and lower

bounded by two values U,L > 0, i.e. L ≤ v
w
≤ U , and define

the threshold function as1:

Ψ(z) = (
Ue

L
)z
L

e
where L ≤

v

w
≤ U (24)

where e denotes the natural logarithm. At each slot n, the

value/weight value of the upcoming user is compared with

the threshold Ψ(zn). The threshold based decision rule is the

following:

Accept user n provided it does not violate the current remain-

ing knapsack capacity and vn/wn ≥ Ψ(zn).

For a static KP, zn thus the threshold is monotone nonde-

creasing, which corresponds to being more willing to include

users early on, and being very selective as zn increases toward

1. In our problem, the knapsack capacity is not static but

gets incremented at arbitrary instants, at arbitrary amounts.

Extending the above threshold to the two extreme cases of (1)

complete information about the increment amounts, and (2)

no information about the increment amounts, the fraction zn
may be defined in the following different ways.

Definition 3. Monotone Threshold. Define zmon,n =∑
n

m=1 xmwm

B
, where B is the total amount of energy B =

B1 +B2 + ...+BJ collected from all harvests.

As an alternative way to the monotone threshold approach,

we define Jumping Threshold as a piecewise monotone func-

tion of the current fraction in each energy harvest interval. It

utilizes the the amount of energy harvested up to that time

instant at denominator of the fraction.

Definition 4. Jumping Threshold. For each n, let J(n) be the

time of the last harvest before time n. The fraction of filled

capacity at time n is defined as zjump,n =
∑

n

m=1 xmwm

B1+...+BJ(n)
.

Clearly, this second threshold function is monotone nonde-

creasing between harvest instants, and jumps down whenever a

new harvest occurs. As opposed to the latter threshold function

which assumes prior knowledge of all harvest amounts over

the problem horizon, this one is an online algorithm by

construction.

A common success metric for a deterministic online al-

gorithm is its competitive ratio, the worst-case ratio of the

algorithm’s performance to the optimal offline solution under

the same input. An online algorithm A for a user sequence γ
that is α-competitive satisfies the following:

OPT (γ)

A(γ)
≤ α, where α ≥ 1 (25)

whereOPT (γ) and A(γ) are the values obtained from optimal

offline algorithm and the proposed online heuristic A respec-

tively. Having complete uncertainty in the input, the heuristic

proposed should build solutions with a competitive ratio better

than the worst-case ratio by α.

Remark 1. Under the condition
∑N1

m=1 xmwm ≤ B1, Mono-

tone Threshold guarantees a competitive ratio no more than

1The form of this threshold function is found through linear programming
and shown to achieve an optimal competitive ratio in [17]



ln(U/L)+1 assuming two energy harvest intervals, i.e. k = 2.

Extending the proof in [17] to the dynamic capacity case,

the competitive ratio derivation reveals that Monotone Thresh-

old provides the same constant competitive ratio which is op-

timal in the case of online KP with static and presumably high

capacity. Next, we will propose different threshold generation

methods using different optimization tools, namely genetic

algorithms and fuzzy logic.

B. Threshold method via Genetic Optimization

Genetic Algorithms is a widely applied technique for

optimization and search problems, especially NP-hard ones

including KPs. Basically, candidate solutions are stochastically

selected, recombined, mutated, either eliminated or retained

based on relative fitness; even when the original problem is

based upon a deterministic model. We propose the implemen-

tation of this stochastic approach to our deterministic problem

with the twist that the knapsack capacity may also change as

solutions evolve toward better ones in time. Thus, generation

adaptation and the capacity incrementation need to be jointly

taken into account.

To apply GA on a fraction based scheme, a chromosome is

chosen as a vector that defines a threshold for each region of

values the fraction may take. For this purpose, the values that

remaining fraction of capacity (z) can take are quantized in

the following manner: The range of fraction ([0, 1]) is divided

into equal regions as [t1t2...t1000], where ti corresponds to

the threshold for region i, i.e. ψ(z) = ti, and note that

z ∈ [ i−1
1000

, i
1000

]. A quantization over 1000 intervals is quite

sufficient, providing an opportunity to sweep over a wide

range. A number of chromosomes are randomly generated

at the beginning and their corresponding competitive ratios

are found through the fitness function evaluation. The fitness

function checks the energy constraint on the available capacity

at each step as well. In addition, capacity is updated at each

energy replenishment, so is the fraction z. The observations

on the fraction based method on the natural selection of the

best users over generations produce a certain competitive ratio

in the best and the worst cases for randomly generated parent

sequences, provided and discussed in Section V.

C. Threshold method via Rule Based Optimization

A connected set of well defined rules, consisting of related

variables in both the propositions and consequences, can

handle uncertain knowledge successfully in decision problems.

Although rule based approaches have been implemented in

quite a few resource allocation problems in the literature [5],

we have come across no previous studies on the threshold

determination via this method.

There are two input memberships functions (MF) assigned

to define the decision strategy in each possible case for

APOM. Both of the input MFs are defined as trapezoidals of

5 degrees. The output MF is assigned as the desired change

in the threshold, the ultimate trend of which will be used to

determine which users to serve eventually. One of the input

membership functions is chosen as the closeness to energy

TABLE I
MEMBERSHIP RULES OF 5 DEGREES FOR THRESHOLD DETERMINATION

BELONGING TO THE MEMBERSHIP FUNCTIONS

Energy Harvest Closeness Capacity Fullness Threshold

Very-Near Very-High Med

Very-Near High Low

Very-Near Med Low

Very-Near Low Very-Low

Very-Near Very-Low Very-Low

Near Very-High High

Near High Med

Near Med Low

Near Low Very-Low

Near Very-Low Very-Low

Med Very-High High

Med High Med

Med Med Med

Med Low Low

Med Very-Low Very-Low

Far Very-High Very-High

Far High High

Far Med High

Far Low Low

Far Very-Low Low

Very-Far Very-High Very-High

Very-Far High Very-High

Very-Far Med High

Very-Far Low Med

Very-Far Very-Low Low

harvest instants in terms of the number of user arrivals. This

parameter is prominent in real life scenarios since expecting an

energy harvest sooner or at a far instant may completely alter

action to be taken at that slot. Once, the harvest instant gets

closer and closer, the service provider should adopt a greedy

attitude since it would serve as long as its service capacity

allows it to do. This metric is chosen to vary between [0, 1]
where the values closer to 1 denotes that an energy arrival is

presumed to happen soon, presented as Very-Near. Similarly,

Very-Far stands for the user arrivals at the beginning of an

energy harvest interval where the input MF is set to be in

the vicinity of 0. In addition to the energy replenishment rate,

the fraction of the utilized energy of available capacity is a

critical measure as well. Thus, the second MF is assigned as

the depletion of available energy of APOM. The values vary

between [0, 1] interval same as the first MF function, ranging

from Very-Low to Very-High in 5 levels.

The behaviour of the threshold function using the input MFs

and following the well calibrated rules is shown in Figure 2.

It should also be noted that the improved performance of this

heuristic is largely related with the enlarged problem dimen-

sion. The accuracy of decisions leads to an improved utility

maximization performance through proposing a 3D solution

to a 2D problem, obviously at an increased complexity.

V. NUMERICAL AND SIMULATION RESULTS

A. Stochastic Service Policy Optimization Related Results

It is observed that both the optimal and suboptimal policies

behave more conservatively at the beginning, and become

more greedy as the end of the problem horizon gets closer. As
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Fig. 2. Surface Graph of Threshold Function Attained via Rule Based
Algorithm Described in Section IV-C Indicating the Behaviour of Output
Threshold Function with respect to Input Membership Functions
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Fig. 3. The Comparison of the Performances for Expected Energy Threshold
Policy, Greedy Policy and Conservative Policy wrt. Optimal Policy when
available energy=5, N = 100, K = 2 for two different user types with
efficiency ratios 10 and 5 (best users appear with high probability e.g. 0.7)

illustrated in Figures 3 and 4, the Expected Threshold Policy

performs very close to optimal. Drawbacks of purely greedy

and conservative policies are also evident on the figures. Figure

3 that when the efficient users appear with high probability,

conservative policies outperform greedy ones. On the other

hand, when the inefficient users appear with low probability,

greedy policies are more advantageous than the conservative

approaches. However, Expected Threshold Policy proposed in

this paper is robust to variations in user distributions.

B. Deterministic Service Policy Optimization Related Results

It will be interesting to study the competitive ratios of

the various policies analysed in the previous sections. As a

benchmark, the offline optimal policy will be used, hence the

values obtained will be overestimating the competitive ratio

with respect to the online optimal for each case. In other

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

Harvest Probability (q)

E
xp

ec
te

d 
T

ot
al

 V
al

ue
 o

ve
r 

10
0 

S
lo

ts

 

 
optimal by DP
greedy
conservative
expected threshold

Fig. 4. The Comparison of the Performances for Expected Energy Threshold
Policy, Greedy Policy and Conservative Policy wrt. Optimal Policy when
available energy=5, N = 100, K = 2 for two different user types with
efficiency ratios 10 and 5 (worst users appear with high probability e.g. 0.7)

words, the competitive ratios of the algorithms may actually

better than the estimates found here.

The simulation results shown in Tables II and III are ob-

tained for the case of predicted energy harvests. User efficiency

(v/w) ratios are bounded as 6 = L ≤ v
w

≤ U = 10.

User efficiency ratios take uniformly distributed random values

within this interval. The knapsack capacity (energy available

at the start of the horizon) is 2000. 1000 Monte Carlo trials

are conducted, generating 1000 user arrivals on each trial.

Results illustrated in Tables II and III show that even the

worst-case competitive ratio never exceeds 1.75. Moreover, the

results for the monotone threshold function are consistent with

the worst possible competitive ratio stated in Section IV-A.

Among the tested algorithms, the rule based threshold method

has the strongest performance, achieving the lowest worst case

competitive ratio.

Next, the energy harvest patterns are considered in a more

realistic scenario where the overall resource allocation problem

is examined over 10 energy harvests, assumed to occur in

a 24-hour cycle. Also, distinct amounts of the harvests are

assumed in this case and assigned arbitrarily to model the

potential weather condition changes and different locations of

the APOM. The competitive ratio analysis for all of the thresh-

old function methods proposed above yield the results shown

in the performance graph 5. The worst-case results illustrated

in Figure 5 reveal that the Monotone Threshold function and

Rule Based Threshold function present closer performance to

each other as the user value/weight characteristics are more

diverse. However, the rule based threshold provides the best

competitive ratio for a less distinct user set as the user diversity

ratio (U/L) approaches to 0.9 in the worst-case analysis.

VI. CONCLUSION

We addressed the problem of online user admission for

an ”access point on the move” scenario. As the energy of

the access point gets replenished at arbitrary time instances,



TABLE II
COMPARISON OF COMPETITIVE RATIOS FOR DIFFERENT THRESHOLD

GENERATION METHODS FOR 1000 USERS AND CAPACITY=2000

Threshold method Average
comp. ratio

Worst
comp. ratio

Best comp.
ratio

Monotone threshold 1.1084 1.3100 1.0640

Jumping threshold 1.3700 1.7200 1.3500

GA based threshold 1.1422 1.5102 1.1087

Rule based threshold 1.0362 1.2066 1.0229

TABLE III
COMPARISON OF PERFORMANCES FOR DIFFERENT THRESHOLD

GENERATION METHODS WITH OPTIMAL OFFLINE SOLUTION FOR 1000
USERS AND CAPACITY=2000

Method Average tot.
value

Worst tot.
value

Best tot.
value

Offline optimal soln. 17599 17167 18050

Monotone threshold 15880 13374 16647

Jumping threshold 12778 10221 13103

GA based threshold 15416 11581 16042

Rule based threshold 17003 14524 17163

the problem can be modeled as a Knapsack Problem (KP)

with dynamic and incremental capacity. We investigated the

problem under two different setups where energy and user ar-

rivals are modelled stochastically as well as deterministically.

The optimality and structure of a threshold based solution

to the stochastic problem was shown, and a computationally

friendly ”Expected Threshold Policy” was shown to well

approximate the optimal DP solution. On the deterministic

side, we considered adaptive threshold based policies where a

user is admitted if its utility to weight ratio exceeds a certain

threshold which may be static or dynamic. A competitive

ratio was exhibited for a monotone threshold for the two-

harvest case. In addition to extended online threshold functions

based on a previous literature, threshold functions using Rule

Based approach and a Genetic Algorithm are also developed.

Experimental results demonstrate that the proposed decision

methods using different threshold functions for the resource

allocation problem of the APOM are efficient in achieving

close to optimal competitive ratios as well as low computa-
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Fig. 5. Performance Evaluation of Different Online Threshold Heuristics vs.
Diversity in Users Characteristics: Worst Case Competitive Ratio Analysis,
Monte Carlo Simulation of 1000 runs over a Randomly Generated User
Sequence of N = 1000 Users under J = 10 Energy Harvests of Different
Amounts Modelled over 24-Hour with APOM Capacity Constraint of 2000

tional complexity. All the proposed scalable solutions can be

applicable to other instances of online KP with incremental

capacity.
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