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Abstract—Inspired by recent industry efforts toward provid-
ing Internet access to areas of the world devoid of regular
telecommunications infrastructure, an online resource allocation
problem for a mobile access point (AP) is studied. While
prudently managing its available energy, the AP allocates its
resources to maximize the total utility (reward) provided to
the users demanding service. The problem is formulated as a
0/1 dynamic knapsack problem with incremental capacity in a
finite time horizon, the solution of which is quite open in the
literature. The problem is approached from through stochastic
and deterministic formulations. For the stochastic case, using
a dynamic programming setup, the optimality of a threshold
based solution is exhibited, and a simple threshold based policy
which performs closely to optimal is obtained via the expected
threshold method. For the deterministic formulation, several
online heuristics based on an instantaneous threshold that can
adapt to short-time-scale dynamics are proposed, including one
with an optimal competitive ratio under a certain condition. The
performance of all heuristics are comparatively studied.

I. INTRODUCTION

This paper considers a case of exploiting renewable energy
to power a mobile Internet router. We define an Access Point
on the Move (APOM) as a flying platform (e.g., situated in
the lower stratosphere) powered by solar energy providing
service to users in different locations on its path. The APOM
resource allocation problem considered in this paper has
been motivated by recent industrial efforts toward providing
ubiquitous Internet access by launching mobile Internet service
providers (ISP) in the Earth’s atmosphere [1].

We concern ourselves with the following resource alloca-
tion problem: As the APOM moves over a certain area and
observes various user demands, and given an energy budget
that is occasionally but arbitrarily replenished, which demands
should it serve to maximize an overall utility.

A. Related Work

Mobile service providers have certain advantages over fixed
ones [2]. Various studies exist regarding mobile sinks in
conventional networks that do not expoit renewable energy
[3], [2]. Some of these studies focused on determining optimal
paths in order to prolong network lifetime [4], [5].

In recent years, employing energy harvesting (via ambient
energy sources such as solar irradiation [6], and vibrations
[7]) to power transmitters of network devices such as APs has
been drawing great attention from the research community.
The consideration of mobile access points with energy harvest
capability is relatively new. Several of the recent studies on
the topic are concerned with finding optimal routing paths

[8]. Xie et al. [9] address the problem of colocating the
mobile service provider on the wireless charging machine with
the objective of minimizing energy consumption. The closely
related works of Ren and Liang [10] considered a distributed
time allocation method to maximize data collection in energy
harvesting sensor networks while defining a scenario of a
constrained path with all sensors having renewable energy
sources.

Kashef et. al. [11] consider binary decision problem to
transmit or defer several tasks according to a stochastic model
based on Gilbert-Elliot channel and prove that a threshold
based approach is optimal. Similar works as [12], [13], also
consider threshold based solutions for the resource allocation
problem in energy harvesting systems for stochastic models.
In recent work [14], [15] resource allocation at solar powered
stationary and mobile service providers has been adressed
through various different optimization techniques.

The problem at hand can be set up as a 0/1 dynamic online
Knapsack problem. While the Knapsack problem is a well
known combinatorial optimization problem [16], competitive
online solutions are limited. Chakrabarty et. al. proposes a
constant competitive solution to the problem with static and
large capacity [17]. The dynamic capacity case, which applies
to the setup in this paper, is largely open.

B. Our Contribution

This paper studies a mobile access point powered through
(solar) energy harvesting, which aims to maximize the total
data service it provides to users appearing to it in a sequential
manner. One difference of the approach from related studies is
that the problem is cast as an online user admission problem
under deterministic as well as stochastic models for the user
(demand) population.

The resource allocation problem is mapped to a multi
constraint 0/1 knapsack problem (KP). After exhibiting the ex-
istence of a threshold based optimal policy, scalable and com-
putationally cost effective heuristics are proposed. The per-
formance of these heuristics are studied numerically (through
simulations) and competitive ratio analyses are conducted.

In the resource allocation literature, there are a number
of studies implementing the optimization tools proposed here
such as genetic algorithms and rule-based logic, but to our
knowledge this is the first application of these techniques
to a threshold based user selection problem. Furthermore,
our schemes constitute a fairly competitive solution to the
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Fig. 1. System Model of APOM

dynamic knapsack problem with incremental capacity, optimal
competitive ratios for which are currently not available.

C. Organization of the paper

The system model and the setup of the optimal decision
problem of which users to serve is defined as a generalized
version of a 0/1 knapsack problem in Section II. Next, the
stochastic version of the problem is examined in detail and
several approaches providing both optimal and suboptimal
solutions are proposed in Section III. After exhibiting an
optimal algorithm and the existence of a threshold for the
stochastic model, the problem is investigated for a determinis-
tic model where several novel optimization tools are employed
to propose threshold based heuristic solutions to the resource
allocation problem in Section IV. Detailed numerical and
simulation results are presented in Section V. The paper is
concluded with an outline of future directions in Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider an APOM (mobile Internet access point or router)
relying on renewable energy resources (e.g. solar, wind) while
it moves on a predefined path. As it travels on its route, deci-
sions are to be made on an event-based schedule where each
user request represents the start of a slot. We consider a finite
horizon problem with NV slots and IV (distinct) corresponding
users.

The sequential user arrival model has been motivated by
the following. Operating on remote areas, it is envisioned
that users with transceivers that can communicate with the
APOM are distributed over a large geographical area. Thus,
by the time a new user appears, the service of the previous
one is complete. As every energy replenishment will constitute
a change the service capacity of APOM, the problem will
be examined in J subintervals regarding J harvest instances
as depicted in Figure 1. Each user will be represented by a
value and weight pair: (v,,, w,, ) for the n*" user, independently
from any specific channel presumption. The value of a user
corresponds to the utility gained by serving a user whereas
the weight corresponds to the power consumption required to
serve it. APOM makes a binary decision at each slot, whether
to serve the encountered user or not. Once a decision on a
user has been made, there will be no re-evaluation on the
same user. In the case of interest where energy replenishment
rate cannot meet the power needed to serve all users, APOM
has to (in an online fashion) has to pick a proper subset of
users to maximize total utility under energy constraints.

In the following sections online heuristics and policies are
proposed over system models constructed upon both deter-
ministic and stochastic threshold based schemes considering
user characteristics and energy harvests. For the deterministic
problem formulation, following a widely adopted assumption
about energy replenishment, the amount of harvested energy
in certain time periods are presumed to be non-deterministic
but predictable [6]. However, over a stochastic problem for-
mulation, energy scavenging is modelled as an IID random
process using the similar assumptions in [11], [14].

Both deterministic and stochastic approaches for this system
setup bring discrete power levels and utilities, which is also
consistent with practical concerns. Following knapsack termi-
nology, APOM is characterized by its capacity to serve, which
corresponds to the amount of energy stored in its battery.
The main aim is to collect the maximum value over IV users
while ensuring that total weight does not exceed the service
capacity. Stated this way, the problem is an online knapsack
problem. However, in accordance with energy harvesting, we
allow capacity replenishment that results in an extension of
knapsack problem with dynamic incremental capacity.

Problem 1. Service policy optimization: deterministic model
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There is no presumed probabilistic model on user arrivals or
types in deterministic setup in Problem 1, that is each users is
associated with (vy,, w, ) pair. On the other hand, considering
the stochastic model, demand and utility of encountered users
are modelled as discrete random variables. Thus the maximiza-
tion is calculated over an expectation of total value till the end
of finite horizon N. There are assumed to be K types of users
appearing with probability p(k) such that Zszl p(k) =11in
this model. Each is associated with a utility (v, (k)) and energy
demand (w, (k)) appearing at each slot n. Then, the objective
of the APOM is to achieve a maximum expected utility under
energy causality constraints as given in Problem 2.



Problem 2. Service policy optimization: stochastic model
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At the beginning of the problem horizon, there is a certain
amount of energy stored in the battery. Energy is replenished
(with arbitrary amounts) right after slots n = Ny, Na, ... Nj.
The problem is stated in terms of the decision variables {x,, €
0,1,,n=1,2,...,N}’s, which indicate the decision to either
serve the nt" user (x,, = 1) or pass it up (x, = 0) .

III. OPTIMIZING THE SERVICE POLICY OF APOM
THROUGH A STOCHASTIC KNAPSACK PROBLEM
FORMULATION

A. Optimal Online Policy via Dynamic Programming

For the following analysis, a state for the nth user is to be
defined in terms of the available energy e = [1, ..., E] and user
type k. Let the action taken for n‘" user be x,, = {0, 1} where
z, = 1 means "transmit” and z,, = 0 means “defer”. Action
space over N slots is {0,1}V. Energy arrivals {Q,, € {0,1}}
are modelled as an IID random sequence indexed by n. In
each slot, the probability of a user of type k, k € {1,... K}
is 1/ K, independently of all other slots, the value of a user of
type k being v(k) and the costs are unity, w(k) = 1, without
loss of all generality.

V(e, k,n) denotes the expected total value from slot n
starting with energy level e and user type k till the end of time
horizon N, that is, V (e, k,n) = E(Y.~_ Vix;). A Dynamic
Programming (DP) equation can be written to maximize this
value, starting with:

V(e k,N) = v(k),Ve > 1 ®)

For a current user n, the expectation of the total value (till
the end of the horizon), after choosing to transmit to the cur-
rent user, is denoted as Vi (e, k, n) whereas that after choosing
denying that user is represented as Vy(e, k,n). Comparing
these quantities, the optimal expected value may be stated as:

V*(e,k,n) = maxV,, (e, k,n) = max{Vi(e, k,n), Vo(e, k,n)}

T
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Backward induction of DP reveals a threshold based policy
where APOM adopts a conservative attitude at initial slots and
turns into a Greedy form towards the end of the horizon, N.
APOM attempts to serve users with higher utility as long as the
energy constraints are satisfied, which implies that the residual
energy of the APOM should be greater than the weight of the

corresponding user. A pseudo code of the optimal solution is
given in Algorithm 1.

Algorithm 1 DP solution to the problem for finite horizon

for e =0to E do
for k =1to K do
V(e,k, N + 1) = 0 {Initialization step}
end for
end for
for n = N to 1 do
for e =0 to E do
for k=1to K do
if w(k) > e then
V(e k,n) = Egor o) {V*(e+Q, k', n+1)}
else
Ve, k,n) = max{Eqr g){V*(e + Q,k',n+ 1)}, v(k) +
Er,y{V*(e—w(k)+Q, k" ,n+1}} {Recursive equation}
end if
return V (e, k,n)
end for
end for
end for

B. Structure of the Optimal Policy

The structure of the optimal policy may be obtained based
on the DP relaxation.

1) Existence of threshold:

Lemma 1. For a given k and n, the state defined as expected
total reward V. (e, k,n) is super-modular in available energy
and decision pair (e, x), that is, for any 0 < eg < e1 < 0,
Vilei, k,n) + Vo(eo, k,n) > Vo(er, k,n) + Vi(eo, k,n) for
1<n<N.

Proof. The stated super-modularity corresponds the statement:

Vi(er, k,n) — Vo(er, k,n) > Vi(eo, k,n) — Vo(eo, k,n)
(10

In our construction energy harvests are in increments of 1
hence there is an integer difference between e; and eq. It
suffices to prove this statement for e; — ey = 1 (it can be
easily extended to higher differences by iteration of the same
argument.) Let e; = ey + 1 = e + 1. The equality above can
be shown to hold for 1 <n < N by the following argument:

Vi(e,k,n) — Vo(e, k,n) = v(k)
K
1 ! A
— 1) — 1 1
+Kklz:=1q(V(e,k,n+ )—V(e+1,E,n+1))
+1-q)(V(e—-1,k' n+1)=V(e,k',n+1)) (11)
and,
Vile+1,k,n) — Vo(e+ 1,k,n) = v(k)
K
1 ! A
+Kklz::1q(V(e+1,k,n+1)—V(e+2,k,n+1))

+(1—q)(V(e,k',n+1)—V(e+1,k',n+1)) (12)
By subtracting (11) from (12), a sufficient condition for (10)



to hold Vn > 1 becomes:

Vie,k,n)—Vie—1,k,n) >V(e+ 1,k,n)— V(e k,n)
(13)

Then, the condition of (13) is proved by induction. First, the
condition is satisfied when n = 1, that is both sides of the
equation are equal to 0. Second, if it is true for some n — 1
then it also holds for n.

Vie,k,n) —V(e—1,k,n) >V(e+1,k,n)— V(e k,n)
(14)

We will examine the three cases corresponding 3 energy states
(e + 1,e,e — 1) and the three decisions (dy,d2,ds € {0,1})
respectively.

Var(e+ 1,k,n)
—Vaa(e, k,n) — (Vaa(e, kyn) — Vas(e — 1,k,n)) <0 (15)

Vaile+ 1,k,n) — Vg (e, k,n) + Var (e, k,n) — Vaa(e, k,n)
—(Vaz(e, kyn) — Vas(e — 1, k,n))
—Vas(e, k,n) + Vas(e, kyn) <0

(16)

By optimality of dp for energy state e, Vyi(e,k,n) —
Vaz(e, k,n) statement is already smaller and equal to 0. Same
property holds for the Vys(e, k,n) — Vaa(e, k,n) statement.
Therefore, we should only consider the remaining terms. For
each possible case of [d1, d3] € {0,1}?, the inequality in (16)
is shown to be satisfied. For example, lets examine the case
where di = 1,dy = 1:

Vile+1,k,n) — Vi(e,k,n) — (Vi(e,k,n) — Vi(e — 1,k,n))
K

= Z p(k)g(V(e+1,k,n—1)—V(e,k,n—1)

k=1
—V(e,k,n—1)+V(e—1,k,n—1))
+(1-q¢)(V(e,kyn—1)—=V(e—1,k,n—1)
—Vie-1,kn-1)+V(e—2,k,n—1)) <0
(17)

The above inequality holds since the difference is assumed
to be non increasing in available energy (e). Similar steps
may be followed for all combinations of d; and d3 where
[d1,d3] € {0,1}2. Hence, the total expected reward is a super-
modular function in (d,e). [l

Theorem 1. The optimal policy is a threshold type policy in

the available energy at each slot n and there is a threshold n
. 1 re>nnk)

defined as: x, (k) = { 0 :e<nink)

Proof. Let {e1,e9,e3} be the available energies at three de-

cision instants such that e; < ey < e3. Suppose there exists

an optimal policy which chooses to transmit at energy levels

e and e3 while denying the user at the energy level es. This

contradicts Lemma 1. Therefore, the crossover from “Defer”

to ”Transmit” happens only once as e is increased (holding all

other parameters constant), i.e. there is a threshold. O

2) Monotonicity of threshold:

Lemma 2. Expected total reward V,,(e, k,n) is super-modular
in slot index and decision pair (n,x), that is Vi(e,k,n+1) +
Vz)(ea kv TL) 2 Vo(e, kv n+ ]-) + ‘/1(6a kv TL)

Proof. Following similar steps as in the proof of Lemma 1,
supermodularity corresponds to the statement:

Vile,k,n+1) — Vo(e,k,n+1) > Vi(e, k,n) — Vo(e, k,n)
(18)

O

Corollary 1. The threshold function on the available energy
to serve a user, n(n, k) defined in Theorem 1 is monotonically
non-increasing with slot number n.

Proof. Letn > 1 be the first slot index such that the threshold
increases from n to n + 1. This means the policy chooses to
transmit to a user of some type k£ at n while denying a user
of the same type at slot n + 1, for the same starting energy e.
By (18) this policy can be improved by reversing this decision
hence cannot be optimal. O

C. Suboptimal Solution: Expected Threshold Policy

DP provides an optimal solution for 0/1 dynamic and
stochastic Knapsack problem with growing capacity; however
its computational complexity increases exponentially in IV,
which is consistent with the NP-hardness of the problem[18].
In this section, a computationally cost- effective suboptimal
policy called Expected Threshold Policy [19], [12] will be
adapted to this problem.

First, we define the following bound on the expectation of
energy depletion (RHS of (19)) at slot n if the available energy

is e and expected harvest amount from slot n till the end of
N-1

time horizon N is denoted as Z E{Qm|Q} '} .
m=n
N-1 N
e+ Z E{Qmmyfil} > Z E{wmem } (19)
m=n m=n+1

After stating a bound on the expected energy consumption
from slot n till the end of time horizon in (19), a compu-
tationally cost effective suboptimal policy called “Expected
Threshold” is proposed in (22) as follows:

|1 :e>q
R o)
where
N N-1
A= > Elwmzn}- > E{QuQ!'} @D
m=n+1 m=n

As it can be seen from (22) and (23), APOM makes a
decision to serve a user of type k appearing in slot n if the
available energy e at slot n is greater or equal to threshold



level 7. n is stated as the difference between the expected
energy consumption for users with higher value and expected
energy replenishment from slot n till the end of horizon N.

As an example, if the weights are all equal to one and
harvest process is IID then, the expected threshold policy
becomes:

1 :e>n

where

K
n=N-n+1)( > pw—q (23)

k'=k+1

and users of type k € {1, ..., K} are arranged such that priority
of a user (v/w) increases with increasing k.

To examine the performance of the expected threshold
policy in Section (V), two more different heuristics are also
defined as follows:

Definition 1. Greedy policy is a policy that serves an encoun-
tered user whenever there is available energy to serve it.

Definition 2. Conservative policy is a policy that serves only
the best user when there is available energy to serve it.

IV. OPTIMIZING THE SERVICE POLICY OF APOM
THROUGH A KNAPSACK PROBLEM FORMULATION OVER
DETERMINISTIC MODEL

Responding to instantaneous requests of encountered users,
APOM has to adopt an efficient and fast decision making
strategy as a new user demand appears. In such problems, if a
well defined threshold could be stated, then the threshold based
decision mechanism gives a satisfactory result in terms of
overall performance and computational complexity. Hence, we
shall mainly look for threshold based schemes which provably
exhibit experimentally strong performance.

A. An Online Policy with Deterministic Threshold Method

This section restricts attention to threshold based decision
rules, where the values and weights of the encountered users
are compared with a time-varying threshold. In addition to
time, the threshold may also be a function of the fraction of
remaining capacity in the battery. To consider the deterministic
online knapsack problem in a threshold based scheme, upper
and lower bounds on the user rate, energy requirement and
energy harvesting will be assumed, which are not unrealistic
considering practical correspondents to these limitations exist.

The value/weight cost efficiency (v/w), will be the critical
decision metric for each user. The instantaneous threshold
is_defined as a monotonic increasing function of z, =
w the fraction of the capacity used up by the n'*
slot. Following [17], where an optimal threshold scheme was
developed for the static capacity 0/1 KP, we restrict attention
to the case where the value/weight values are upper and lower
bounded by two values U, L > 0, i.e. L < % < U, and define

the threshold function as':
Ue. . L
W(z) = ()
where e denotes the natural logarithm. At each slot n, the
value/weight value of the upcoming user is compared with
the threshold ¥(z,,). The threshold based decision rule is the
following:
Accept user n provided it does not violate the current remain-
ing knapsack capacity and v, /w,, > U(z,).

For a static KP, z,, thus the threshold is monotone nonde-
creasing, which corresponds to being more willing to include
users early on, and being very selective as z,, increases toward
1. In our problem, the knapsack capacity is not static but
gets incremented at arbitrary instants, at arbitrary amounts.
Extending the above threshold to the two extreme cases of (1)
complete information about the increment amounts, and (2)
no information about the increment amounts, the fraction z,,
may be defined in the following different ways.

where L < —<U 24)

gle

Deﬁnition 3. Monotone Threshold. Define zmonn =
M, where B is the total amount of energy B =

B1+ By + ... + By collected from all harvests.

As an alternative way to the monotone threshold approach,
we define Jumping Threshold as a piecewise monotone func-
tion of the current fraction in each energy harvest interval. It
utilizes the the amount of energy harvested up to that time
instant at denominator of the fraction.

Definition 4. Jumping Threshold. For each n, let J(n) be the
time of the last harvest before time n. The Zfraction of filled

i 1 ; L T Win
capacity at time n is defined as zZjumpn = ﬁ'

Clearly, this second threshold function is monotone nonde-
creasing between harvest instants, and jumps down whenever a
new harvest occurs. As opposed to the latter threshold function
which assumes prior knowledge of all harvest amounts over
the problem horizon, this one is an online algorithm by
construction.

A common success metric for a deterministic online al-
gorithm 1is its competitive ratio, the worst-case ratio of the
algorithm’s performance to the optimal offline solution under
the same input. An online algorithm A for a user sequence ~y
that is o-competitive satisfies the following:

OPT ()
A7)

where OPT'(y) and A(~y) are the values obtained from optimal
offline algorithm and the proposed online heuristic A respec-
tively. Having complete uncertainty in the input, the heuristic
proposed should build solutions with a competitive ratio better
than the worst-case ratio by a.

< a, where a>1 (25)

Remark 1. Under the condition Zf\ril:l TmWm < B1, Mono-

tone Threshold guarantees a competitive ratio no more than

IThe form of this threshold function is found through linear programming
and shown to achieve an optimal competitive ratio in [17]



In(U/L)+1 assuming two energy harvest intervals, i.e. k = 2.

Extending the proof in [17] to the dynamic capacity case,
the competitive ratio derivation reveals that Monotone Thresh-
old provides the same constant competitive ratio which is op-
timal in the case of online KP with static and presumably high
capacity. Next, we will propose different threshold generation
methods using different optimization tools, namely genetic
algorithms and fuzzy logic.

B. Threshold method via Genetic Optimization

Genetic Algorithms is a widely applied technique for
optimization and search problems, especially NP-hard ones
including KPs. Basically, candidate solutions are stochastically
selected, recombined, mutated, either eliminated or retained
based on relative fitness; even when the original problem is
based upon a deterministic model. We propose the implemen-
tation of this stochastic approach to our deterministic problem
with the twist that the knapsack capacity may also change as
solutions evolve toward better ones in time. Thus, generation
adaptation and the capacity incrementation need to be jointly
taken into account.

To apply GA on a fraction based scheme, a chromosome is
chosen as a vector that defines a threshold for each region of
values the fraction may take. For this purpose, the values that
remaining fraction of capacity (z) can take are quantized in
the following manner: The range of fraction ([0, 1]) is divided
into equal regions as [t1to...t1000], Where ¢; corresponds to
the threshold for region 4, i.e. ¥(z) = t;, and note that
z € 4555+ Togg)- A quantization over 1000 intervals is quite
sufficient, providing an opportunity to sweep over a wide
range. A number of chromosomes are randomly generated
at the beginning and their corresponding competitive ratios
are found through the fitness function evaluation. The fitness
function checks the energy constraint on the available capacity
at each step as well. In addition, capacity is updated at each
energy replenishment, so is the fraction z. The observations
on the fraction based method on the natural selection of the
best users over generations produce a certain competitive ratio
in the best and the worst cases for randomly generated parent
sequences, provided and discussed in Section V.

C. Threshold method via Rule Based Optimization

A connected set of well defined rules, consisting of related
variables in both the propositions and consequences, can
handle uncertain knowledge successfully in decision problems.
Although rule based approaches have been implemented in
quite a few resource allocation problems in the literature [5],
we have come across no previous studies on the threshold
determination via this method.

There are two input memberships functions (MF) assigned
to define the decision strategy in each possible case for
APOM. Both of the input MFs are defined as trapezoidals of
5 degrees. The output MF is assigned as the desired change
in the threshold, the ultimate trend of which will be used to
determine which users to serve eventually. One of the input
membership functions is chosen as the closeness to energy

TABLE I
MEMBERSHIP RULES OF 5 DEGREES FOR THRESHOLD DETERMINATION
BELONGING TO THE MEMBERSHIP FUNCTIONS

Energy Harvest Closeness | Capacity Fullness | Threshold
Very-Near Very-High Med
Very-Near High Low
Very-Near Med Low
Very-Near Low Very-Low
Very-Near Very-Low Very-Low
Near Very-High High
Near High Med
Near Med Low
Near Low Very-Low
Near Very-Low Very-Low
Med Very-High High
Med High Med
Med Med Med
Med Low Low
Med Very-Low Very-Low
Far Very-High Very-High
Far High High
Far Med High
Far Low Low
Far Very-Low Low
Very-Far Very-High Very-High
Very-Far High Very-High
Very-Far Med High
Very-Far Low Med
Very-Far Very-Low Low

harvest instants in terms of the number of user arrivals. This
parameter is prominent in real life scenarios since expecting an
energy harvest sooner or at a far instant may completely alter
action to be taken at that slot. Once, the harvest instant gets
closer and closer, the service provider should adopt a greedy
attitude since it would serve as long as its service capacity
allows it to do. This metric is chosen to vary between [0, 1]
where the values closer to 1 denotes that an energy arrival is
presumed to happen soon, presented as Very-Near. Similarly,
Very-Far stands for the user arrivals at the beginning of an
energy harvest interval where the input MF is set to be in
the vicinity of 0. In addition to the energy replenishment rate,
the fraction of the utilized energy of available capacity is a
critical measure as well. Thus, the second MF is assigned as
the depletion of available energy of APOM. The values vary
between [0, 1] interval same as the first MF function, ranging
from Very-Low to Very-High in 5 levels.

The behaviour of the threshold function using the input MFs
and following the well calibrated rules is shown in Figure 2.
It should also be noted that the improved performance of this
heuristic is largely related with the enlarged problem dimen-
sion. The accuracy of decisions leads to an improved utility
maximization performance through proposing a 3D solution
to a 2D problem, obviously at an increased complexity.

V. NUMERICAL AND SIMULATION RESULTS

A. Stochastic Service Policy Optimization Related Results

It is observed that both the optimal and suboptimal policies
behave more conservatively at the beginning, and become
more greedy as the end of the problem horizon gets closer. As



0.8
i)
© 0.6
£
]
[=}
S 04
[
£
0.2
1
1
0.8
0.5 06
energy harvest 0.4
closeness 0 o capacity fullness
Fig. 2. Surface Graph of Threshold Function Attained via Rule Based

Algorithm Described in Section IV-C Indicating the Behaviour of Output
Threshold Function with respect to Input Membership Functions

900

optimal by DP
—p— greedy

800 =—e— conservative
——o— expected threshold

700

500 8

400 - 8

300 8

Expected Toltal Value over 100 Slots

200 . . B : 4

100! I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Harvest Probability (q)

Fig. 3. The Comparison of the Performances for Expected Energy Threshold
Policy, Greedy Policy and Conservative Policy wrt. Optimal Policy when
available energy=5, N = 100, K = 2 for two different user types with
efficiency ratios 10 and 5 (best users appear with high probability e.g. 0.7)

illustrated in Figures 3 and 4, the Expected Threshold Policy
performs very close to optimal. Drawbacks of purely greedy
and conservative policies are also evident on the figures. Figure
3 that when the efficient users appear with high probability,
conservative policies outperform greedy ones. On the other
hand, when the inefficient users appear with low probability,
greedy policies are more advantageous than the conservative
approaches. However, Expected Threshold Policy proposed in
this paper is robust to variations in user distributions.

B. Deterministic Service Policy Optimization Related Results

It will be interesting to study the competitive ratios of
the various policies analysed in the previous sections. As a
benchmark, the offline optimal policy will be used, hence the
values obtained will be overestimating the competitive ratio
with respect to the online optimal for each case. In other
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Fig. 4. The Comparison of the Performances for Expected Energy Threshold
Policy, Greedy Policy and Conservative Policy wrt. Optimal Policy when
available energy=5, NV = 100, K = 2 for two different user types with
efficiency ratios 10 and 5 (worst users appear with high probability e.g. 0.7)

words, the competitive ratios of the algorithms may actually
better than the estimates found here.

The simulation results shown in Tables II and III are ob-
tained for the case of predicted energy harvests. User efficiency
(v/w) ratios are bounded as 6 = L < = < U = 10.
User efficiency ratios take uniformly distributed random values
within this interval. The knapsack capacity (energy available
at the start of the horizon) is 2000. 1000 Monte Carlo trials
are conducted, generating 1000 user arrivals on each trial.
Results illustrated in Tables II and III show that even the
worst-case competitive ratio never exceeds 1.75. Moreover, the
results for the monotone threshold function are consistent with
the worst possible competitive ratio stated in Section IV-A.
Among the tested algorithms, the rule based threshold method
has the strongest performance, achieving the lowest worst case
competitive ratio.

Next, the energy harvest patterns are considered in a more
realistic scenario where the overall resource allocation problem
is examined over 10 energy harvests, assumed to occur in
a 24-hour cycle. Also, distinct amounts of the harvests are
assumed in this case and assigned arbitrarily to model the
potential weather condition changes and different locations of
the APOM. The competitive ratio analysis for all of the thresh-
old function methods proposed above yield the results shown
in the performance graph 5. The worst-case results illustrated
in Figure 5 reveal that the Monotone Threshold function and
Rule Based Threshold function present closer performance to
each other as the user value/weight characteristics are more
diverse. However, the rule based threshold provides the best
competitive ratio for a less distinct user set as the user diversity
ratio (U/L) approaches to 0.9 in the worst-case analysis.

VI. CONCLUSION

We addressed the problem of online user admission for
an “access point on the move” scenario. As the energy of
the access point gets replenished at arbitrary time instances,



TABLE 11
COMPARISON OF COMPETITIVE RATIOS FOR DIFFERENT THRESHOLD
GENERATION METHODS FOR 1000 USERS AND CAPACITY=2000

Threshold method Average Worst Best comp.
comp. ratio comp. ratio ratio
Monotone threshold 1.1084 1.3100 1.0640
Jumping threshold 1.3700 1.7200 1.3500
GA based threshold 1.1422 1.5102 1.1087
Rule based threshold | 1.0362 1.2066 1.0229
TABLE III

COMPARISON OF PERFORMANCES FOR DIFFERENT THRESHOLD
GENERATION METHODS WITH OPTIMAL OFFLINE SOLUTION FOR 1000
USERS AND CAPACITY=2000

Method Average tot. | Worst tot. | Best tot.
value value value

Offline optimal soln. 17599 17167 18050

Monotone threshold 15880 13374 16647

Jumping threshold 12778 10221 13103

GA based threshold 15416 11581 16042

Rule based threshold | 17003 14524 17163

the problem can be modeled as a Knapsack Problem (KP)
with dynamic and incremental capacity. We investigated the
problem under two different setups where energy and user ar-
rivals are modelled stochastically as well as deterministically.
The optimality and structure of a threshold based solution
to the stochastic problem was shown, and a computationally
friendly “Expected Threshold Policy” was shown to well
approximate the optimal DP solution. On the deterministic
side, we considered adaptive threshold based policies where a
user is admitted if its utility to weight ratio exceeds a certain
threshold which may be static or dynamic. A competitive
ratio was exhibited for a monotone threshold for the two-
harvest case. In addition to extended online threshold functions
based on a previous literature, threshold functions using Rule
Based approach and a Genetic Algorithm are also developed.
Experimental results demonstrate that the proposed decision
methods using different threshold functions for the resource
allocation problem of the APOM are efficient in achieving
close to optimal competitive ratios as well as low computa-

- - -jumping threshold
——monotone threshold
24— —gabased threshold

== rule based threshold

22 -

Competitive Ratio

User Diversity Ratio (U\L) !
Fig. 5. Performance Evaluation of Different Online Threshold Heuristics vs.
Diversity in Users Characteristics: Worst Case Competitive Ratio Analysis,
Monte Carlo Simulation of 1000 runs over a Randomly Generated User
Sequence of N = 1000 Users under J = 10 Energy Harvests of Different
Amounts Modelled over 24-Hour with APOM Capacity Constraint of 2000

tional complexity. All the proposed scalable solutions can be
applicable to other instances of online KP with incremental
capacity.
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